Rao’s Divergentism

The main point of this post is to encourage the reader who has not yet done so, to read Venkatesh Rao’s essay Can You Hear Me Now. I will not say too much about it. The purpose is potentially for future reference, and simply to point out a connection with some current topics here.

Rao begins:

The fundamental question of life, the universe and everything is the one popularized by the Verizon guy in the ad: Can you hear me now?

This conclusion grew out of a conversation I had about a year ago, with some friends, in which I proposed a modest-little philosophy I dubbed divergentism. Here is a picture.

https://206hwf3fj4w52u3br03fi242-wpengine.netdna-ssl.com/wp-content/uploads/2015/12/divergentism.jpg

Divergentism is the idea that as individuals grow out into the universe, they diverge from each other in thought-space. This, I argued, is true even if in absolute terms, the sum of shared beliefs is steadily increasing. Because the sum of beliefs that are not shared increases even faster on average. Unfortunately, you are unique, just like everybody else.

If you are a divergentist, you believe that as you age, the average answer to the fundamental Verizon question slowly drifts, as you age, from yes, to no, to silenceIf you’re unlucky, you’re a hedgehog and get unhappier and unhappier about this as you age. If you are lucky, you’re a fox and you increasingly make your peace with this condition. If you’re really lucky, you die too early to notice the slowly descending silence, before it even becomes necessary to Google the phrase existential horror.

To me, this seemed like a completely obvious idea. Much to my delight, most people I ran it by immediately hated it.

The entire essay is worth reading.

I would question whether this is really the “fundamental question of life, the universe, and everything,” but Rao has a point. People do tend to think of their life as meaningful on account of social connections, and if those social connections grow increasingly weaker, they will tend to worry that their life is becoming less meaningful.

The point about the intellectual life of an individual is largely true. This is connected to what I said about the philosophical progress of an individual some days ago. There is also a connection with Kuhn’s idea of how the progress of the sciences causes a gulf to arise between them in such a way that it becomes more and more difficult for scientists in different fields to communicate with one another. If we look at the overall intellectual life of an individual as a sort of individual advancing science, the “sciences” of each individual will generally speaking tend to diverge from one another, allowing less and less communication. This is not about people making mistakes, although obviously making mistakes will contribute to this process. As Rao says, it may be that “the sum of shared beliefs is steadily increasing,” but this will not prevent their intellectual lives overall from diverging, just as the divergence of the sciences does not result from falsity, but from increasingly detailed focus on different truths.

Pseudoscience

James Chastek reflects on science, pseudoscience, and religion:

The demarcation problem is a name for our failure to identify criteria that can distinguish science from pseudo-science, in spite of there being two such things. In the absence of rational criteria, we get clarity on the difference from various institutional-cultural institutions, like the consensus produced by university gatekeepers though peer review (which generates, by definition, peer pressure), grants, prestige, and other stick-and-carrot means.  Like most institutions we expect it to do reasonably well (or at least better than an every-man-for-himself chaos) though it will come at a cost of group-think, elitism, the occasional witch hunt etc..

The demarcation problem generalizes to our failure to identify any meta-criterion for what counts as legitimate discourse or belief. Kant’s famous attempt to articulate meta-criteria for thought, which concluded to limiting it to an intuition of Euclidean space distinct from linear time turned out to be no limitation at all, and Davidson pointed out that the very idea of a conceptual scheme – a finite scope or limit to human thought that could be determined in advance – requires us to posit a language that is in-principle untranslatable, which is to speak of something that has to meaning. Heraclitus was right – you can’t come to the borders of thought, even if you travel down every road. We simply can’t articulate a domain of acceptable belief in general from which we can identify the auslanders.

This is true of religion as well. By our own resources we can know there are pseudo ones and truer ones, but the degree of clarity we want in this area is going to have to be borrowed from an intellect other than our own. The various religious institutions are attempts to make up for this deficiency in reason and provide us with clearer and more precise articulations of true religion in exactly the same way that we get it in the sciences. That a westerner tends to accept Christianity arises from the same sort of process that makes him tend to accept scientific consensus. He walks within the ambit of various institutions that are designed to help him toward truth, and they almost certainly succeed at this more than he would succeed if left solely to his own lights. Anyone who thinks he can easily identify true science while no one can identify true religion is right in a sense, but he doesn’t recognize how heavily his belief is resting on institutional power.

Like Sean Collins as quoted in this earlier post, Chastek seems to be unreasonably emphasizing the similarity between science and religion where in fact there is a greater dissimilarity. As discussed in the last post, a field is only considered scientific once it has completely dominated the area of thought among persistent students of that field. It is not exactly that “no one disagrees,” so much as that it becomes too complicated for anyone except those students. But those students, to an extremely high degree, have a unified view of the field. An actual equivalent in the area of religion would be if virtually all theologians accepted the same religion. Even here, it might be a bit strange to find whole countries that accepted another religion, the way it would be strange to find a whole country believing in a flat earth. But perhaps not so strange; occasionally you do get a poll indicating a fairly large percentage of some nation believing some claim entirely opposed to the paradigm of some field of science. Nonetheless, if virtually all theologians accepted the same religion, the comparison between science and religion would be pretty apt. Since that is not the case in the slightest, religion looks more like a field where knowledge remains “undeveloped,” in the way I suggested in reference to some areas of philosophy.

Chastek is right to note that one cannot set down some absolute list of rules setting apart reasonable thought from unreasonable thought, or science from pseudoscience. Nonetheless, reflecting on the comments to the previous post, it occurs to me that we have a pretty good idea of what pseudoscience is. The term itself, of course, means something like “fake science,” so the idea would be something purporting to be scientific which is not scientific.

A recurring element in Kuhn’s book, as in the title itself, is the idea of change in scientific paradigms. Kuhn remarks:

Probably the single most prevalent claim advanced by the proponents of a new paradigm is that they can solve the problems that have led the old one to a crisis. When it can legitimately be made, this claim is often the most effective one possible. In the area for which it is advanced the paradigm is known to be in trouble. That trouble has repeatedly been explored, and attempts to remove it have again and again proved vain. “Crucial experiments”—those able to discriminate particularly sharply between the two paradigms—have been recognized and attested before the new paradigm was even invented. Copernicus thus claimed that he had solved the long-vexing problem of the length of the calendar year, Newton that he had reconciled terrestrial and celestial mechanics, Lavoisier that he had solved the problems of gas-identity and of weight relations, and Einstein that he had made electrodynamics compatible with a revised science of motion.

Some pages later, considering why paradigm change is considered progress, he continues:

Because the unit of scientific achievement is the solved problem and because the group knows well which problems have already been solved, few scientists will easily be persuaded to adopt a viewpoint that again opens to question many problems that had previously been solved. Nature itself must first undermine professional security by making prior achievements seem problematic. Furthermore, even when that has occurred and a new candidate for paradigm has been evoked, scientists will be reluctant to embrace it unless convinced that two all-important conditions are being met. First, the new candidate must seem to resolve some outstanding and generally recognized problem that can be met in no other way. Second, the new paradigm must promise to preserve a relatively large part of the concrete problem-solving ability that has accrued to science through its predecessors. Novelty for its own sake is not a desideratum in the sciences as it is in so many other creative fields. As a result, though new paradigms seldom or never possess all the capabilities of their predecessors, they usually preserve a great deal of the most concrete parts of past achievement and they always permit additional concrete problem-solutions besides.

It is not automatically unscientific to suggest that the current paradigm is somehow mistaken and needs to be replaced: in fact the whole idea of paradigm change depends on scientists doing this on a fairly frequent basis. But Kuhn suggests that this mainly happens when there are well known problems with the current paradigm. Additionally, when a new one is proposed, it should be in order to solve new problems. This suggests one particular form of pseudoscientific behavior: to propose new paradigms when there are no special problems with the current ones. Or at any rate, to propose that they be taken just as seriously as the current ones; there is not necessarily anything unreasonable about saying, “Although we currently view things according to paradigm A, someday we might need to adopt something somewhat like paradigm B,” even if one is not yet aware of any great problems with paradigm A.

A particularly anti-scientific form of this would be to propose that the current paradigm be abandoned in favor of an earlier one. It is easy to see why scientists would be especially opposed to such a proposal: since the earlier one was abandoned in order to solve new problems and to resolve more and more serious discrepancies between the paradigm and experience, going back to an earlier paradigm would suddenly create all sorts of new problems.

On the other hand, why do we have the “science” part of “pseudoscience”? This is related to Chastek’s point about institutions as a force creating conformity of opinion. The pseudoscientist is a sort of predator in relation to these institutions. While the goal of science is truth, at least to a first approximation, the pseudoscientist has something different in mind: this is clear from the fact that he does not care whether his theory solves any new problems, and it is even more clear in the case of a retrogressive proposal. But the pseudoscientist will attempt to use the institutions of science to advance his cause. This will tend in reality to be highly unsuccessful in relation to ordinary scientists, for the same reason that Kuhn remarks that scientists who refuse to adopt a new paradigm after its general acceptance “are simply read out of the profession, which thereafter ignores their work.” In a similar way, if someone proposes an unnecessary paradigm change, scientists will simply ignore the proposal. But if the pseudoscientist manages to get beyond certain barriers, e.g. peer review, it may be more difficult for ordinary people to distinguish between ordinary science and pseudoscience, since they are not in fact using their own understanding of the matter, but simply possess a general trust that the scientists know the general truth about the field.

One of the most common usages of the term “pseudoscience” is in relation to young earth creationism, and rightly so. This is in fact a case of attempting to return to an earlier paradigm which was abandoned precisely because of the kind of tensions that are typical of paradigm change. Thus one of their favorite methods is to attempt to get things published in peer reviewed journals. Very occasionally this is successful, but obviously it has very little effect on the field itself: just as with late adopters or people who never change their mind, the rest of the field, as Kuhn says, “ignores their work.” But to the degree that they manage to lead ordinary people to adopt their views, this is to act in a sort of predator relationship with the institutions of science: to take advantage of these institutions for the sake of falsehood rather than truth.

That’s kind of blunt, someone will say. If paradigm change is frequently necessary, surely it could happen at least once that a former paradigm was better than a later one, such that it would be necessary to return to it, and for the sake of truth. People are not infallible, so surely this is possible.

Indeed, it is possible. But very unlikely, for all the reasons that Kuhn mentions. And in order for such a proposal to be truth oriented, it would have to be motivated by the perception of problems with the current paradigm, even if they were problems that had not been foreseen when the original paradigm was abandoned. In practice such proposals are normally not motivated by problems at all,  and thus there is very little orientation towards truth in them.

Naturally, all of this has some bearing on the comments to the last post, but I will leave most of that to the reader’s consideration. I will remark, however, that things like “he is simply ignorant of basic physics because he is a computer scientist, not a physicist,” or “Your last question tells me that you do not know much physics,” or that it is important not to “ignore the verdict of the reviewers and editors of a respected physics journal,” might be important clues for the ordinary fellow.

Technical Discussion and Philosophical Progress

In The Structure of Scientific Revolutions (p. 19-21), Thomas Kuhn remarks on the tendency of sciences to acquire a technical vocabulary and manner of discussion:

We shall be examining the nature of this highly directed or paradigm-based research in the next section, but must first note briefly how the emergence of a paradigm affects the structure of the group that practices the field. When, in the development of a natural science, an individual or group first produces a synthesis able to attract most of the next generation’s practitioners, the older schools gradually disappear. In part their disappearance is caused by their members’ conversion to the new paradigm. But there are always some men who cling to one or another of the older views, and they are simply read out of the profession, which thereafter ignores their work. The new paradigm implies a new and more rigid definition of the field. Those unwilling or unable to accommodate their work to it must proceed in isolation or attach themselves to some other group. Historically, they have often simply stayed in the departments of philosophy from which so many of the special sciences have been spawned. As these indications hint, it is sometimes just its reception of a paradigm that transforms a group previously interested merely in the study of nature into a profession or, at least, a discipline. In the sciences (though not in fields like medicine, technology, and law, of which the principal raison d’être is an external social need), the formation of specialized journals, the foundation of specialists’ societies, and the claim for a special place in the curriculum have usually been associated with a group’s first reception of a single paradigm. At least this was the case between the time, a century and a half ago, when the institutional pattern of scientific specialization first developed and the very recent time when the paraphernalia of specialization acquired a prestige of their own.

The more rigid definition of the scientific group has other consequences. When the individual scientist can take a paradigm for granted, he need no longer, in his major works, attempt to build his field anew, starting from first principles and justifying the use of each concept introduced. That can be left to the writer of textbooks. Given a textbook, however, the creative scientist can begin his research where it leaves off and thus concentrate exclusively upon the subtlest and most esoteric aspects of the natural phenomena that concern his group. And as he does this, his research communiqués will begin to change in ways whose evolution has been too little studied but whose modern end products are obvious to all and oppressive to many. No longer will his researches usually be embodied in books addressed, like Franklin’s Experiments . . . on Electricity or Darwin’s Origin of Species, to anyone who might be interested in the subject matter of the field. Instead they will usually appear as brief articles addressed only to professional colleagues, the men whose knowledge of a shared paradigm can be assumed and who prove to be the only ones able to read the papers addressed to them.

Today in the sciences, books are usually either texts or retrospective reflections upon one aspect or another of the scientific life. The scientist who writes one is more likely to find his professional reputation impaired than enhanced. Only in the earlier, pre-paradigm, stages of the development of the various sciences did the book ordinarily possess the same relation to professional achievement that it still retains in other creative fields. And only in those fields that still retain the book, with or without the article, as a vehicle for research communication are the lines of professionalization still so loosely drawn that the layman may hope to follow progress by reading the practitioners’ original reports. Both in mathematics and astronomy, research reports had ceased already in antiquity to be intelligible to a generally educated audience. In dynamics, research became similarly esoteric in the later Middle Ages, and it recaptured general intelligibility only briefly during the early seventeenth century when a new paradigm replaced the one that had guided medieval research. Electrical research began to require translation for the layman before the end of the eighteenth century, and most other fields of physical science ceased to be generally accessible in the nineteenth. During the same two centuries similar transitions can be isolated in the various parts of the biological sciences. In parts of the social sciences they may well be occurring today. Although it has become customary, and is surely proper, to deplore the widening gulf that separates the professional scientist from his colleagues in other fields, too little attention is paid to the essential relationship between that gulf and the mechanisms intrinsic to scientific advance.

As Kuhn says, this tendency has very well known results. Consider the papers constantly being published at arxiv.org, for example. If you are not familiar with the science in question, you will likely not be able to understand even the title, let alone the summary or the content. Many or most of the words will be meaningless to you, and even if they are not, their combinations will be.

It is also not difficult to see why this happens, and why it must happen. Everything we understand, we understand through form, which is a network of relationships. Thus if particular investigators wish to go into something in greater detail, these relationships will become more and more remote from the ordinary knowledge accessible to everyone. “Just say it in simple words” will become literally impossible, in the sense that explaining the “simple” statement will involve explaining a huge number of relationships that by default a person would have no knowledge of. That is the purpose, as Kuhn notes, of textbooks, namely to form connections between everyday knowledge and the more complex relationships studied in particular fields.

In Chapter XIII, Kuhn relates this sort of development with the word “science” and progress:

The preceding pages have carried my schematic description of scientific development as far as it can go in this essay. Nevertheless, they cannot quite provide a conclusion. If this description has at all caught the essential structure of a science’s continuing evolution, it will simultaneously have posed a special problem: Why should the enterprise sketched above move steadily ahead in ways that, say, art, political theory, or philosophy does not? Why is progress a perquisite reserved almost exclusively for the activities we call science? The most usual answers to that question have been denied in the body of this essay. We must conclude it by asking whether substitutes can be found.

Notice immediately that part of the question is entirely semantic. To a very great extent the term ‘science’ is reserved for fields that do progress in obvious ways. Nowhere does this show more clearly than in the recurrent debates about whether one or another of the contemporary social sciences is really a science. These debates have parallels in the pre-paradigm periods of fields that are today unhesitatingly labeled science. Their ostensible issue throughout is a definition of that vexing term. Men argue that psychology, for example, is a science because it possesses such and such characteristics. Others counter that those characteristics are either unnecessary or not sufficient to make a field a science. Often great energy is invested, great passion aroused, and the outsider is at a loss to know why. Can very much depend upon a definition of ‘science’? Can a definition tell a man whether he is a scientist or not? If so, why do not natural scientists or artists worry about the definition of the term? Inevitably one suspects that the issue is more fundamental. Probably questions like the following are really being asked: Why does my field fail to move ahead in the way that, say, physics does? What changes in technique or method or ideology would enable it to do so? These are not, however, questions that could respond to an agreement on definition. Furthermore, if precedent from the natural sciences serves, they will cease to be a source of concern not when a definition is found, but when the groups that now doubt their own status achieve consensus about their past and present accomplishments. It may, for example, be significant that economists argue less about whether their field is a science than do practitioners of some other fields of social science. Is that because economists know what science is? Or is it rather economics about which they agree?

The last point is telling. There is significantly more consensus among economists than among other sorts of social science, and consequently less worry about whether their field is scientific or not. The difference, then, is a difference of how much agreement is found. There is not necessarily any difference with respect to the kind of increasingly detailed thought that results in increasingly technical discussion. Kuhn remarks:

The theologian who articulates dogma or the philosopher who refines the Kantian imperatives contributes to progress, if only to that of the group that shares his premises. No creative school recognizes a category of work that is, on the one hand, a creative success, but is not, on the other, an addition to the collective achievement of the group. If we doubt, as many do, that nonscientific fields make progress, that cannot be because individual schools make none. Rather, it must be because there are always competing schools, each of which constantly questions the very foundations of the others. The man who argues that philosophy, for example, has made no progress emphasizes that there are still Aristotelians, not that Aristotelianism has failed to progress.

In this sense, if a particular school believes they possess the general truth about some matter (here theology or philosophy), they will quite naturally begin to discuss it in greater detail and in ways which are mainly intelligible to students of that school, just as happens in other technical fields. The field is only failing to progress in the sense that there are other large communities making contrasting claims, while we begin to use the term “science” and to speak of progress when one school completely dominates the field, and to a first approximation even people who know nothing about it assume that the particular school has things basically right.

What does this imply about progress in philosophy?

1. There is progress in the knowledge of topics that were once considered “philosophy,” but when we get to this point, we usually begin to use the name of a particular science, and with good reason, since technical specialization arises in the manner discussed above. Tyler Cowen discusses this sort of thing here.

2. Areas in which there doesn’t seem to be such progress, are probably most often areas where human knowledge remains at an early stage of development; it is precisely at such early stages that discussion does not have a technical character and when it can generally be understood by ordinary people without a specialized education. I pointed out that Aristotle was mistaken to assume that the sciences in general were fully developed. We would be equally mistaken to make such an assumption at the present times. As Kuhn notes, astronomy and mathematics achieved a “scientific” stage centuries before geology and biology did the same, and these long before economics and the like. The conclusion that one should draw is that metaphysics is hard, not that it is impossible or meaningless.

3. Even now, particular philosophical schools or individuals can make progress even without such consensus. This is evidently true if their overall position is correct or more correct than that of others, but it remains true even if their overall position is more wrong than that of other schools. Naturally, in the latter situation, they will not advance beyond the better position of other schools, but they will advance.

4. One who wishes to progress philosophically cannot avoid the tendency to technical specialization, even as an individual. This can be rather problematic for bloggers and people engaging in similar projects. John Nerst describes this problem:

The more I think about this issue the more unsolvable it seems to become. Loyal readers of a publication won’t be satisfied by having the same points reiterated again and again. News media get around this by focusing on, well, news. News are events, you can describe them and react to them for a while until they’re no longer news. Publications that aim to be more analytical and focus on discussing ideas, frameworks, slow processes and large-scale narratives instead of events have a more difficult task because their subject matter doesn’t change quickly enough for it to be possible to churn out new material every day without repeating yourself[2].

Unless you start building upwards. Instead of laying out stone after stone on the ground you put one on top of another, and then one on top of two others laying next to each other, and then one on top of all that, making a single three-level structure. In practice this means writing new material that builds on what came before, taking ideas further and further towards greater complexity, nuance and sophistication. This is what academia does when working correctly.

Mass media (including the more analytical outlets) do it very little and it’s obvious why: it’s too demanding[3]. If an article references six other things you need to have read to fully understand it you’re going to have a lot of difficulty attracting new readers.

Some of his conclusions:

I think that’s the real reason I don’t try to pitch more writing to various online publications. In my summary of 2018 I said it was because I thought my writing was to “too idiosyncratic, abstract and personal to fit in anywhere but my own blog”. Now I think the main reason is that I don’t so much want to take part in public debate or make myself a career. I want to explore ideas that lie at the edge of my own thinking. To do that I must assume that a reader knows broadly the same things I know and I’m just not that interested in writing about things where I can’t do that[9]. I want to follow my thoughts to for me new and unknown places — and import whatever packages I need to do it. This style isn’t compatible with the expectation that a piece will be able to stand on its own and deliver a single recognizable (and defensible) point[10].

The downside is of course obscurity. To achieve both relevance in the wider world and to build on other ideas enough to reach for the sky you need extraordinary success — so extraordinary that you’re essentially pulling the rest of the world along with you.

Obscurity is certainly one result. Another (relevant at least from the VP’s point of view) is disrespect. Scientists are generally respected despite the general incomprehensibility of their writing, on account of the absence of opposing schools. This lack leads people to assume that their arguments must be mostly right, even though they cannot understand them themselves. This can actually lead to an “Emperor has No Clothes” situation, where a scientist publishes something basically crazy, but others, even in his field, are reluctant to say so because they might appear to be the ones who are ignorant. As an example, consider Joy Christian’s “Disproof of Bell’s Theorem.” After reading this text, Scott Aaronson comments:

In response to my post criticizing his “disproof” of Bell’s Theorem, Joy Christian taunted me that “all I knew was words.”  By this, he meant that my criticisms were entirely based on circumstantial evidence, for example that (1) Joy clearly didn’t understand what the word “theorem” even meant, (2) every other sentence he uttered contained howling misconceptions, (3) his papers were written in an obscure, “crackpot” way, and (4) several people had written very clear papers pointing out mathematical errors in his work, to which Joy had responded only with bluster.  But I hadn’t actually studied Joy’s “work” at a technical level.  Well, yesterday I finally did, and I confess that I was astonished by what I found.  Before, I’d actually given Joy some tiny benefit of the doubt—possibly misled by the length and semi-respectful tone of the papers refuting his claims.  I had assumed that Joy’s errors, though ultimately trivial (how could they not be, when he’s claiming to contradict such a well-understood fact provable with a few lines of arithmetic?), would nevertheless be artfully concealed, and would require some expertise in geometric algebra to spot.  I’d also assumed that of course Joy would have some well-defined hidden-variable model that reproduced the quantum-mechanical predictions for the Bell/CHSH experiment (how could he not?), and that the “only” problem would be that, due to cleverly-hidden mistakes, his model would be subtly nonlocal.

What I actually found was a thousand times worse: closer to the stuff freshmen scrawl on an exam when they have no clue what they’re talking about but are hoping for a few pity points.  It’s so bad that I don’t understand how even Joy’s fellow crackpots haven’t laughed this off the stage.  Look, Joy has a hidden variable λ, which is either 1 or -1 uniformly at random.  He also has a measurement choice a of Alice, and a measurement choice b of Bob.  He then defines Alice and Bob’s measurement outcomes A and B via the following functions:

A(a,λ) = something complicated = (as Joy correctly observes) λ

B(b,λ) = something complicated = (as Joy correctly observes) -λ

I shit you not.  A(a,λ) = λ, and B(b,λ) = -λ.  Neither A nor B has any dependence on the choices of measurement a and b, and the complicated definitions that he gives for them turn out to be completely superfluous.  No matter what measurements are made, A and B are always perfectly anticorrelated with each other.

You might wonder: what could lead anyone—no matter how deluded—even to think such a thing could violate the Bell/CHSH inequalities?

“Give opposite answers in all cases” is in fact entirely irrelevant to Bell’s inequality. Thus the rest of Joy’s paper has no bearing whatsoever on the issue: it is essentially meaningless nonsense. Aaronson says he was possibly “misled by the length and semi-respectful tone of the papers refuting his claims.” But it is not difficult to see why people would be cautious in this way: the fear that they would turn out to be the ones missing something important.

The individual blogger in philosophy, however, is in a different position. If they wish to develop their thought it must become more technical, and there is no similar community backing that would cause others to assume that the writing basically makes sense. Thus, one’s writing is not only likely to become more and more obscure, but others will become more and more likely to assume that it is more or less meaningless word salad. This will happen even more to the degree that there is cultural opposition to one’s vocabulary, concepts, and topics.

Words, Meaning, and Formal Copies

There is quick way to respond to the implicit questions at the end of the last post. I noted in an earlier discussion of form that form is not only copied into the mind; it is also copied into language itself. Any time you describe something in words, you are to some degree copying its form into your description.

This implies that Aristotle’s objection that a mind using an organ would not be able to know all things could equally be made against the possibility of describing all things in words. There simply are not enough combinations of words to relate them to all possible combinations of things; thus, just as a black and white image cannot imitate every aspect of a colored scene, so words cannot possibly describe every aspect of reality.

Two things are evident from this comparison:

First, the objection fails overall. There is nothing that cannot be described in words because words are flexible. If we don’t have a word for something, then we can make up a name. Similarly, the meaning of a single word depends on context.  The word “this” can refer to pretty much anything, depending on the context in which it is used. Likewise meaning can be affected by the particular situation of the person using the word, or by broader cultural contexts, and so on.

Second, there is some truth in the objection. It is indeed impossible to describe every aspect of reality at the same time and in complete detail, and the objection gives a very good reason for this: there are simply not enough linguistic combinations to represent all possible combinations of things. The fact that language is not prime matter does mean that language cannot express every detail of reality at once: the determination that is already there does exclude this possibility. But the flexibility of language prevents there from being any particular aspect of things that cannot be described.

My claim about the mind is the same. There is nothing that cannot be understood by the mind, despite the fact that the mind uses the brain, because the relationship between the brain, mind, and world is a flexible one. Just as the word “this” can refer to pretty much anything, so also the corresponding thought. But on the other hand, the limitations of the brain do mean that a perfectly detailed knowledge of everything is excluded.

Our Interlocutor Insists

In a sense, the above account is sufficient to respond to the objection. There does not seem to be a reason to hold Aristotle’s account of the immateriality of the mind, unless there is also a reason to hold that language cannot be used to describe some things, and this does not seem like a reasonable position. Nonetheless, this response will give rise to a new and more detailed objection.

A black and white scene, it will be said, really and truly copies some aspects of a colored scene, and fails to copy others. Thus right angles in the black and white scene may be identical to right angles in the colored scene. The angles are really copied, and the angles are not. But language seems different: since it is conventional, it does not really copy anything. We just pretend, as it were, that we are copying the thing. “Let the word ‘cat’ stand for a cat,” we say, but there is nothing catlike about the word in reality. The form of the cat is not really copied into the word, or so it will be argued. And since we are not really copying anything, this is why language has the flexibility to be able to describe all things. The meaning of thoughts, however, is presumably not conventional. So it seems that we need to copy things in a real way into the mind, the way we copy aspects of a colored scene into a black and white image. And thus, meaning in the mind should not be flexible in this way, and a particular material medium (such as the brain) would still impede knowing all things, the way the black and white image excludes color.

Formal Copies

The above objection is similar to Hilary Lawson’s argument that words cannot really refer to things. In the post linked above on form and reality, we quoted his argument that cause and effect do not have anything in common. I will reproduce that argument here; for the purpose of the following discussion it might be useful to the reader to refer to the remainder of that post.

For a system of closure to provide a means of intervention in openness and thus to function as a closure machine, it requires a means of converting the flux of openness into an array of particularities. This initial layer of closure will be identified as ‘preliminary closure’. As with closure generally, preliminary closure consists in the realisation of particularity as a consequence of holding that which is different as the same. This is achieved through the realisation of material in response to openness. The most minimal example of a system of closure consists of a single preliminary closure. Such a system requires two discrete states, or at least states that can be held as if they were discrete. It is not difficult to provide mechanical examples of such systems which allow for a single preliminary closure. A mousetrap for example, can be regarded as having two discrete states: it is either set, it is ready, or it has sprung, it has gone off. Many different causes may have led to it being in one state or another: it may have been sprung by a mouse, but it could also have been knocked by someone or something, or someone could have deliberately set it off. In the context of the mechanism all of these variations are of no consequence, it is either set or it has sprung. The diversity of the immediate environment is thereby reduced to single state and its absence: it is either set or it is not set. Any mechanical arrangement that enables a system to alternate between two or more discrete states is thereby capable of providing the basis for preliminary closure. For example, a bell or a gate could function as the basis for preliminary closure. The bell can either ring or not ring, the gate can be closed or not closed. The bell may ring as the result of the wind, or a person or animal shaking it, but the cause of the response is in the context of system of no consequence. The bell either rings or it doesn’t. Similarly, the gate may be in one state or another because it has been deliberately moved, or because something or someone has dislodged it accidentally, but these variations are not relevant in the context of the state of system, which in this case is the position of the gate. In either case the cause of the bell ringing or the gate closing is infinitely varied, but in the context of the system the variety of inputs is not accessible to the system and thus of no consequence.

Lawson’s basic argument is that any particular effect could result from any of an infinite number of different causes, and the cause and effect might be entirely different: the effect might be ringing of a bell, but the cause was not bell-like at all, and did not have a ringing sound. So the effect, he says, tells you nothing at all about the cause. In a similar way, he claims, our thoughts cause our words, but our words and our thoughts have nothing in common, and thus our words tell us nothing about our thoughts; and in that sense they do not refer to anything, not even to our thoughts. Likewise, he says, the world causes our thoughts, but since the cause and effect have nothing in common, our thoughts tell us nothing about the world, and do not even refer to it.

As I responded at the time, this account is mistaken from the very first step. Cause and effect always have something in common, namely the cause-effect relationship, although they each have different ends of that relationship. They will also have other things in common depending on the particular nature of the cause and effect in question. Similarly, the causes that are supposedly utterly diverse, in Lawson’s account, have something in common themselves: every situation that rings the bell has “aptness to ring the bell” in common. And when the bell is rung, it “refers” to these situations by the implication that we are in a situation that has aptness to ring the bell, rather than in one of the other situations.

It is not accidental here that “refer” and “relate” are taken from forms of the same verb. Lawson’s claim that words do not “refer” to things is basically the same as the claim that they are not really related to things. And the real problem is that he is looking at matter (in this case the bell) without considering form (in this case the bell’s relationship with the world.)

In a similar way, to say that the word “cat” is not catlike is to look at the sound or at the text as matter, without considering its form, namely the relationship it has with the surrounding context which causes that word to be used. But that relationship is real; the fact that the word is conventional does not prevent it from being true that human experience of cats is the cause of thoughts of cats, and that thoughts of cats are concretely the cause of the usage of the word “cat,” even if they could in some other situation have caused some other word to be used.

I argued in the post on the nature of form (following the one with the discussion of Lawson) that form is a network of relationships apt to make something one. Insofar as an effect really receives form from a cause in the above way, words really receive meaning from the context that gives rise to their use. And in this way, it is not true that form in language is unlike form in a black and white scene, such that one could say that form in the scene is “real” and form in language is not. Both are real.

Thus the objection fails. Nonetheless, it is true that it is easier to see why it is possible to describe anything in words, than it is to see why anything can be known. And this happens simply because “anything is describable in words” precisely because “anything can be known.” So the fact that anything can be known is the more remote cause, and thus harder to know.

 

Tautologies Not Trivial

In mathematics and logic, one sometimes speaks of a “trivial truth” or “trivial theorem”, referring to a tautology. Thus for example in this Quora question, Daniil Kozhemiachenko gives this example:

The fact that all groups of order 2 are isomorphic to one another and commutative entails that there are no non-Abelian groups of order 2.

This statement is a tautology because “Abelian group” here just means one that is commutative: the statement is like the customary example of asserting that “all bachelors are unmarried.”

Some extend this usage of “trivial” to refer to all statements that are true in virtue of the meaning of the terms, sometimes called “analytic.” The effect of this is to say that all statements that are logically necessary are trivial truths. An example of this usage can be seen in this paper by Carin Robinson. Robinson says at the end of the summary:

Firstly, I do not ask us to abandon any of the linguistic practises discussed; merely to adopt the correct attitude towards them. For instance, where we use the laws of logic, let us remember that there are no known/knowable facts about logic. These laws are therefore, to the best of our knowledge, conventions not dissimilar to the rules of a game. And, secondly, once we pass sentence on knowing, a priori, anything but trivial truths we shall have at our disposal the sharpest of philosophical tools. A tool which can only proffer a better brand of empiricism.

While the word “trivial” does have a corresponding Latin form that means ordinary or commonplace, the English word seems to be taken mainly from the “trivium” of grammar, rhetoric, and logic. This would seem to make some sense of calling logical necessities “trivial,” in the sense that they pertain to logic. Still, even here something is missing, since Robinson wants to include the truths of mathematics as trivial, and classically these did not pertain to the aforesaid trivium.

Nonetheless, overall Robinson’s intention, and presumably that of others who speak this way, is to suggest that such things are trivial in the English sense of “unimportant.” That is, they may be important tools, but they are not important for understanding. This is clear at least in our example: Robinson calls them trivial because “there are no known/knowable facts about logic.” Logical necessities tell us nothing about reality, and therefore they provide us with no knowledge. They are true by the meaning of the words, and therefore they cannot be true by reason of facts about reality.

Things that are logically necessary are not trivial in this sense. They are important, both in a practical way and directly for understanding the world.

Consider the failure of the Mars Climate Orbiter:

On November 10, 1999, the Mars Climate Orbiter Mishap Investigation Board released a Phase I report, detailing the suspected issues encountered with the loss of the spacecraft. Previously, on September 8, 1999, Trajectory Correction Maneuver-4 was computed and then executed on September 15, 1999. It was intended to place the spacecraft at an optimal position for an orbital insertion maneuver that would bring the spacecraft around Mars at an altitude of 226 km (140 mi) on September 23, 1999. However, during the week between TCM-4 and the orbital insertion maneuver, the navigation team indicated the altitude may be much lower than intended at 150 to 170 km (93 to 106 mi). Twenty-four hours prior to orbital insertion, calculations placed the orbiter at an altitude of 110 kilometers; 80 kilometers is the minimum altitude that Mars Climate Orbiter was thought to be capable of surviving during this maneuver. Post-failure calculations showed that the spacecraft was on a trajectory that would have taken the orbiter within 57 kilometers of the surface, where the spacecraft likely skipped violently on the uppermost atmosphere and was either destroyed in the atmosphere or re-entered heliocentric space.[1]

The primary cause of this discrepancy was that one piece of ground software supplied by Lockheed Martin produced results in a United States customary unit, contrary to its Software Interface Specification (SIS), while a second system, supplied by NASA, expected those results to be in SI units, in accordance with the SIS. Specifically, software that calculated the total impulse produced by thruster firings produced results in pound-force seconds. The trajectory calculation software then used these results – expected to be in newton seconds – to update the predicted position of the spacecraft.

It is presumably an analytic truth that the units defined in one way are unequal to the units defined in the other. But it was ignoring this analytic truth that was the primary cause of the space probe’s failure. So it is evident that analytic truths can be extremely important for practical purposes.

Such truths can also be important for understanding reality. In fact, they are typically more important for understanding than other truths. The argument against this is that if something is necessary in virtue of the meaning of the words, it cannot be telling us something about reality. But this argument is wrong for one simple reason: words and meaning themselves are both elements of reality, and so they do tell us something about reality, even when the truth is fully determinate given the meaning.

If one accepts the mistaken argument, in fact, sometimes one is led even further. Logically necessary truths cannot tell us anything important for understanding reality, since they are simply facts about the meaning of words. On the other hand, anything which is not logically necessary is in some sense accidental: it might have been otherwise. But accidental things that might have been otherwise cannot help us to understand reality in any deep way: it tells us nothing deep about reality to note that there is a tree outside my window at this moment, when this merely happens to be the case, and could easily have been otherwise. Therefore, since neither logically necessary things, nor logically contingent things, can help us to understand reality in any deep or important way, such understanding must be impossible.

It is fairly rare to make such an argument explicitly, but it is a common implication of many arguments that are actually made or suggested, or it at least influences the way people feel about arguments and understanding.  For example, consider this comment on an earlier post. Timocrates suggests that (1) if you have a first cause, it would have to be a brute fact, since it doesn’t have any other cause, and (2) describing reality can’t tell us any reasons but is “simply another description of how things are.” The suggestion behind these objections is that the very idea of understanding is incoherent. As I said there in response, it is true that every true statement is in some sense “just a description of how things are,” but that was what a true statement was meant to be in any case. It surely was not meant to be a description of how things are not.

That “analytic” or “tautologous” statements can indeed provide a non-trivial understanding of reality can also easily be seen by example. Some examples from this blog:

Good and being. The convertibility of being and goodness is “analytic,” in the sense that carefully thinking about the meaning of desire and the good reveals that a universe where existence as such was bad, or even failed to be good, is logically impossible. In particular, it would require a universe where there is no tendency to exist, and this is impossible given that it is posited that something exists.

Natural selection. One of the most important elements of Darwin’s theory of evolution is the following logically necessary statement: the things that have survived are more likely to be the things that were more likely to survive, and less likely to be the things that were less likely to survive.

Limits of discursive knowledge. Knowledge that uses distinct thoughts and concepts is necessarily limited by issues relating to self-reference. It is clear that this is both logically necessary, and tells us important things about our understanding and its limits.

Knowledge and being. Kant rightly recognized a sense in which it is logically impossible to “know things as they are in themselves,” as explained in this post. But as I said elsewhere, the logically impossible assertion that knowledge demands an identity between the mode of knowing and the mode of being is the basis for virtually every sort of philosophical error. So a grasp on the opposite “tautology” is extremely useful for understanding.

 

Perfectly Random

Suppose you have a string of random binary digits such as the following:

00111100010101001100011011001100110110010010100111

This string is 50 digits long, and was the result of a single attempt using the linked generator.

However, something seems distinctly non-random about it: there are exactly 25 zeros and exactly 25 ones. Naturally, this will not always happen, but most of the time the proportion of zeros will be fairly close to half. And evidently this is necessary, since if the proportion was usually much different from half, then the selection could not have been random in the first place.

There are other things about this string that are definitely not random. It contains only zeros and ones, and no other digits, much less items like letters from the alphabet, or items like ‘%’ and ‘$’.

Why do we have these apparently non-random characteristics? Both sorts of characteristics, the approximate and typical proportion, and the more rigid characteristics, are necessary consequences of the way we obtained or defined this number.

It is easy to see that such characteristics are inevitable. Suppose someone wants to choose something random without any non-random characteristics. Let’s suppose they want to avoid the first sort of characteristic, which is perhaps the “easier” task. They can certainly make the proportion of zeros approximately 75% or anything else that they please. But this will still be a non-random characteristic.

They try again. Suppose they succeed in preventing the series of digits from converging to any specific probability. If they do, there is one and only one way to do this. Much as in our discussion of the mathematical laws of nature, the only way to accomplish this will be to go back and forth between longer and longer strings of zeros and ones. But this is an extremely non-random characteristic. So they may have succeeded in avoiding one particular type of non-randomness, but only at the cost of adding something else very non-random.

Again, consider the second kind of characteristic. Here things are even clearer: the only way to avoid the second kind of characteristic is not to attempt any task in the first place. The only way to win is not to play. Once we have said “your task is to do such and such,” we have already specified some non-random characteristics of the second kind; to avoid such characteristics is to avoid the task completely.

“Completely random,” in fact, is an incoherent idea. No such thing can exist anywhere, in the same way that “formless matter” cannot actually exist, but all matter is formed in one way or another.

The same thing applies to David Hume’s supposed problem of induction. I ended that post with the remark that for his argument to work, he must be “absolutely certain that the future will resemble the past in no way.” But this of course is impossible in the first place; the past and the future are both defined as periods of time, and so there is some resemblance in their very definition, in the same way that any material thing must have some form in its definition, and any “random” thing must have something non-random in its definition.

 

Quantum Mechanics and Libertarian Free Will

In a passage quoted in the last post, Jerry Coyne claims that quantum indeterminacy is irrelevant to free will: “Even the pure indeterminism of quantum mechanics can’t give us free will, because that’s simple randomness, and not a result of our own ‘will.'”

Coyne seems to be thinking that since quantum indeterminism has fixed probabilities in any specific situation, the result for human behavior would necessarily be like our second imaginary situation in the last post. There might be a 20% chance that you would randomly do X, and an 80% chance that you would randomly do Y, and nothing can affect these probabilities. Consequently you cannot be morally responsible for doing X or for doing Y, nor should you be praised or blamed for them.

Wait, you might say. Coyne explicitly favors praise and blame in general. But why? If you would not praise or blame someone doing something randomly, why should you praise or blame someone doing something in a deterministic manner? As explained in the last post, the question is whether reasons have any influence on your behavior. Coyne is assuming that if your behavior is deterministic, it can still be influenced by reasons, but if it is indeterministic, it cannot be. But there is no reason for this to be case. Your behavior can be influenced by reasons whether it is deterministic or not.

St. Thomas argues for libertarian free will on the grounds that there can be reasons for opposite actions:

Man does not choose of necessity. And this is because that which is possible not to be, is not of necessity. Now the reason why it is possible not to choose, or to choose, may be gathered from a twofold power in man. For man can will and not will, act and not act; again, he can will this or that, and do this or that. The reason of this is seated in the very power of the reason. For the will can tend to whatever the reason can apprehend as good. Now the reason can apprehend as good, not only this, viz. “to will” or “to act,” but also this, viz. “not to will” or “not to act.” Again, in all particular goods, the reason can consider an aspect of some good, and the lack of some good, which has the aspect of evil: and in this respect, it can apprehend any single one of such goods as to be chosen or to be avoided. The perfect good alone, which is Happiness, cannot be apprehended by the reason as an evil, or as lacking in any way. Consequently man wills Happiness of necessity, nor can he will not to be happy, or to be unhappy. Now since choice is not of the end, but of the means, as stated above (Article 3); it is not of the perfect good, which is Happiness, but of other particular goods. Therefore man chooses not of necessity, but freely.

Someone might object that if both are possible, there cannot be a reason why someone chooses one rather than the other. This is basically the claim in the third objection:

Further, if two things are absolutely equal, man is not moved to one more than to the other; thus if a hungry man, as Plato says (Cf. De Coelo ii, 13), be confronted on either side with two portions of food equally appetizing and at an equal distance, he is not moved towards one more than to the other; and he finds the reason of this in the immobility of the earth in the middle of the world. Now, if that which is equally (eligible) with something else cannot be chosen, much less can that be chosen which appears as less (eligible). Therefore if two or more things are available, of which one appears to be more (eligible), it is impossible to choose any of the others. Therefore that which appears to hold the first place is chosen of necessity. But every act of choosing is in regard to something that seems in some way better. Therefore every choice is made necessarily.

St. Thomas responds to this that it is a question of what the person considers:

If two things be proposed as equal under one aspect, nothing hinders us from considering in one of them some particular point of superiority, so that the will has a bent towards that one rather than towards the other.

Thus for example, someone might decide to become a doctor because it pays well, or they might decide to become a truck driver because they enjoy driving. Whether they consider “what would I enjoy?” or “what would pay well?” will determine which choice they make.

The reader might notice a flaw, or at least a loose thread, in St. Thomas’s argument. In our example, what determines whether you think about what pays well or what you would enjoy? This could be yet another choice. I could create a spreadsheet of possible jobs and think, “What should I put on it? Should I put the pay? or should I put what I enjoy?” But obviously the question about necessity will simply be pushed back, in this case. Is this choice itself determinate or indeterminate? And what determines what choice I make in this case? Here we are discussing an actual temporal series of thoughts, and it absolutely must have a first, since human life has a beginning in time. Consequently there will have to be a point where, if there is the possibility of “doing A for reason B” and “doing C for reason D”, it cannot be any additional consideration which determines which one is done.

Now it is possible at this point that St. Thomas is mistaken. It might be that the hypothesis that both were “really” possible is mistaken, and something does determine one rather than the other with “necessity.” It is also possible that he is not mistaken. Either way, human reasons do not influence the determination, because reason B and/or reason D are the first reasons considered, by hypothesis (if they were not, we would simply push back the question.)

At this point someone might consider this lack of the influence of reasons to imply that people are not morally responsible for doing A or for doing C. The problem with this is that if you do something without a reason (and without potentially being influenced by a reason), then indeed you would not be morally responsible. But the person doing A or C is not uninfluenced by reasons. They are influenced by reason B, or by reason D. Consequently, they are responsible for their specific action, because they do it for a reason, despite the fact that there is some other general issue that they are not responsible for.

What influence could quantum indeterminacy have here? It might be responsible for deciding between “doing A for reason B” and “doing C for reason D.” And as Coyne says, this would be “simple randomness,” with fixed probabilities in any particular situation. But none of this would prevent this from being a situation that would include libertarian free will, since libertarian free will is precisely nothing but the situation where there are two real possibilities: you might do one thing for one reason, or another thing for another reason. And that is what we would have here.

Does quantum mechanics have this influence in fact, or is this just a theoretical possibility? It very likely does. Some argue that it probably doesn’t, on the grounds that quantum mechanics does not typically seem to imply much indeterminacy for macroscopic objects. The problem with this argument is that the only way of knowing that quantum indeterminacy rarely leads to large scale differences is by using humanly designed items like clocks or computers. And these are specifically designed to be determinate: whenever our artifact is not sufficiently determinate and predictable, we change the design until we get something predictable. If we look at something in nature uninfluenced by human design, like a waterfall, is details are highly unpredictable to us. Which drop of water will be the most distant from this particular point one hour from now? There is no way to know.

But how much real indeterminacy is in the waterfall, or in the human brain, due to quantum indeterminacy? Most likely nobody knows, but it is basically a question of timescales. Do you get a great deal of indeterminacy after one hour, or after several days? One way or another, with the passage of enough time, you will get a degree of real indeterminacy as high as you like. The same thing will be equally true of human behavior. We often notice, in fact, that at short timescales there is less indeterminacy than we subjectively feel. For example, if someone hesitates to accept an invitation, in many situations, others will know that the person is very likely to decline. But the person feels very uncertain, as though there were a 50/50 chance of accepting or declining. The real probabilities might be 90/10 or even more slanted. Nonetheless, the question is one of timescales and not of whether or not there is any indeterminacy. There is, this is basically settled, it will apply to human behavior, and there is little reason to doubt that it applies at relatively short timescales compared to the timescales at which it applies to clocks and computers or other things designed with predictability in mind.

In this sense, quantum indeterminacy strongly suggests that St. Thomas is basically correct about libertarian free will.

On the other hand, Coyne is also right about something here. While it is not true that such “randomness” removes moral responsibility, the fact that people do things for reasons, or that praise and blame is a fitting response to actions done for reasons, Coyne correctly notices that it does not add to the fact that someone is responsible. If there is no human reason for the fact that a person did A for reason B rather than C for reason D, this makes their actions less intelligible, and thus less subject to responsibility. In other words, the “libertarian” part of libertarian free will does not make the will more truly a will, but less truly. In this respect, Coyne is right. This however is unrelated to quantum mechanics or to any particular scientific account. The thoughtful person can understand this simply from general considerations about what it means to act for a reason.

Causality and Moral Responsibility

Consider two imaginary situations:

(1) In the first situation, people are such that when someone sees a red light, they immediately go off and kill someone. Nothing can be done to prevent this, and no intention or desire to do otherwise makes any difference.

In this situation, killing someone after you have seen a red light is not blamed, since it cannot be avoided, but we blame people who show red lights to others. Such people are arrested and convicted as murderers.

(2) In the second situation, people are such that when someone sees a red light, there is a 5% chance they will go off and immediately kill someone, and a 95% chance they will behave normally. Nothing can change this probability: it does not matter whether the person is wicked or virtuous or what their previous attitude to killing was.

In this situation, again, we do not blame people who end up killing someone, but we call them unlucky. We do however blame people who show others red lights, and they are arrested and convicted of second degree murder, or in some cases manslaughter.

Some people would conclude from this that moral responsibility is incoherent: whether the world is deterministic or not, moral responsibility is impossible. Jerry Coyne defends this position in numerous places, as for example here:

We’ve taken a break from the many discussions on this site about free will, but, cognizant of the risks, I want to bring it up again. I think nearly all of us agree that there’s no dualism involved in our decisions: they’re determined completely by the laws of physics. Even the pure indeterminism of quantum mechanics can’t give us free will, because that’s simple randomness, and not a result of our own “will.”

Coyne would perhaps say that “free will” embodies a contradiction much in the way that “square circle” does. “Will” implies a cause, and thus something deterministic. “Free” implies indeterminism, and thus no cause.

In many places Coyne asserts that this implies that moral responsibility does not exist, as for example here:

This four-minute video on free will and responsibility, narrated by polymath Raoul Martinez, was posted by the Royal Society for the Encouragement of the Arts, Manufactures, and Commerce (RSA). Martinez’s point is one I’ve made here many times, and will surely get pushback from: determinism rules human behavior, and our “choices” are all predetermined by our genes and environment. To me, that means that the concept of “moral responsibility” is meaningless, for that implies an ability to choose freely. Nevertheless, we should still retain the concept of responsibility, meaning “an identifiable person did this or that good or bad action”. And, of course, we can sanction or praise people who were responsible in this sense, for such blame and praise can not only reinforce good behavior but is salubrious for society.

I think that Coyne is very wrong about the meaning of free will, somewhat wrong about responsibility, and likely wrong about the consequences of his views for society (e.g. he believes that his view will lead to more humane treatment of prisoners. There is no particular reason to expect this.)

The imaginary situations described in the initial paragraphs of this post do not imply that moral responsibility is impossible, but they do tell us something. In particular, they tell us that responsibility is not directly determined by determinism or its lack. And although Coyne says that “moral responsibility” implies indeterminism, surely even Coyne would not advocate blaming or punishing the person who had the 5% chance of going and killing someone. And the reason is clear: it would not “reinforce good behavior” or be “salubrious for society.” By the terms set out, it would make no difference, so blaming or punishing would be pointless.

Coyne is right that determinism does not imply that punishment is pointless. And he also recognizes that indeterminism does not of itself imply that anyone is responsible for anything. But he fails here to put two and two together: just as determinism does not imply punishment is pointless, nor that it is not, indeterminism likewise implies neither of the two. The conclusion he should draw is not that moral responsibility is meaningless, but that it is independent of both determinism and indeterminism; that is, that both deterministic compatibilism and libertarian free will allow for moral responsibility.

So what is required for praise and blame to have a point? Elsewhere we discussed C.S. Lewis’s claim that something can have a reason or a cause, but not both. In a sense, the initial dilemma in this post can be understood as a similar argument. Either our behavior has deterministic causes, or it has indeterministic causes; therefore it does not have reasons; therefore moral responsibility does not exist.

On the other hand, if people do have reasons for their behavior, there can be good reasons for blaming people who do bad things, and for punishing them. Namely, since those people are themselves acting for reasons, they will be less likely in the future to do those things, and likewise other people, fearing punishment and blame, will be less likely to do them.

As I said against Lewis, reasons do not exclude causes, but require them. Consequently what is necessary for moral responsibility are causes that are consistent with having reasons; one can easily imagine causes that are not consistent with having reasons, as in the imaginary situations described, and such causes would indeed exclude responsibility.

Employer and Employee Model: Truth

In the remote past, I suggested that I would someday follow up on this post. In the current post, I begin to keep that promise.

We can ask about the relationship of the various members of our company with the search for truth.

The CEO, as the predictive engine, has a fairly strong interest in truth, but only insofar as truth is frequently necessary in order to get predictive accuracy. Consequently our CEO will usually insist on the truth when it affects our expectations regarding daily life, but it will care less when we consider things remote from the senses. Additionally, the CEO is highly interested in predicting the behavior of the Employee, and it is not uncommon for falsehood to be better than truth for this purpose.

To put this in another way, the CEO’s interest in truth is instrumental: it is sometimes useful for the CEO’s true goal, predictive accuracy, but not always, and in some cases it can even be detrimental.

As I said here, the Employee is, roughly speaking, the human person as we usually think of one, and consequently the Employee has the same interest in truth that we do. I personally consider truth to be an ultimate end,  and this is probably the opinion of most people, to a greater or lesser degree. In other words, most people consider truth a good thing, even apart from instrumental considerations. Nonetheless, all of us care about various things besides truth, and therefore we also occasionally trade truth for other things.

The Vice President has perhaps the least interest in truth. We could say that they too have some instrumental concern about truth. Thus for example the VP desires food, and this instrumentally requires true ideas about where food is to be found. Nonetheless, as I said in the original post, the VP is the least rational and coherent, and may easily fail to notice such a need. Thus the VP might desire the status resulting from winning an argument, so to speak, but also desire the similar status that results from ridiculing the person holding an opposing view. The frequent result is that a person believes the falsehood that ridiculing an opponent generally increases the chance that they will change their mind (e.g. see John Loftus’s attempt to justify ridicule.)

Given this account, we can raise several disturbing questions.

First, although we have said the Employee values truth in itself, can this really be true, rather than simply a mistaken belief on the part of the Employee? As I suggested in the original account, the Employee is in some way a consequence of the CEO and the VP. Consequently, if neither of these places intrinsic value on truth, how is it possible that the Employee does?

Second, even if the Employee sincerely places an intrinsic value on truth, how is this not a misplaced value? Again, if the Employee is something like a result of the others, what is good for the Employee should be what is good for the others, and thus if truth is not intrinsically good for the others, it should not be intrinsically good for the Employee.

In response to the first question, the Employee can indeed believe in the intrinsic value of truth, and of many other things to which the CEO and VP do not assign intrinsic value. This happens because as we are considering the model, there is a real division of labor, even if the Employee arises historically in a secondary manner. As I said in the other post, the Employee’s beliefs are our beliefs, and the Employee can believe anything that we believe. Furthermore, the Employee can really act on such beliefs about the goodness of truth or other things, even when the CEO and VP do not have the same values. The reason for this is the same as the reason that the CEO will often go along with the desires of the VP, even though the CEO places intrinsic value only on predictive accuracy. The linked post explains, in effect, why the CEO goes along with sex, even though only the VP really wants it. In a similar way, if the Employee believes that sex outside of marriage is immoral, the CEO often goes along with avoiding such sex, even though the CEO cares about predictive accuracy, not about sex or its avoidance. Of course, in this particular case, there is a good chance of conflict between the Employee and VP, and the CEO dislikes conflict, since it makes it harder to predict what the person overall will end up doing. And since the VP very rarely changes its mind in this case, the CEO will often end up encouraging the Employee to change their mind about the morality of such sex: thus one of the most frequent reasons why people abandon their religion is that it says that sex in some situations is wrong, but they still desire sex in those situations.

In response to the second, the Employee is not wrong to suppose that truth is intrinsically valuable. The argument against this would be that the human good is based on human flourishing, and (it is claimed) we do not need truth for such flourishing, since the CEO and VP do not care about truth in itself. The problem with this is that such flourishing requires that the Employee care about truth, and even the CEO needs the Employee to care in this way, for the sake of its own goal of predictive accuracy. Consider a real-life company: the employer does not necessarily care about whether the employee is being paid, considered in itself, but only insofar as it is instrumentally useful for convincing the employee to work for the employer. But the employer does care about whether the employee cares about being paid: if the employee does not care about being paid, they will not work for the employer.

Concern for truth in itself, apart from predictive accuracy, affects us when we consider things that cannot possibly affect our future experience: thus in previous cases I have discussed the likelihood that there are stars and planets outside the boundaries of the visible universe. This is probably true; but if I did not care about truth in itself, I might as well say that the universe is surrounded by purple elephants. I do not expect any experience to verify or falsify the claim, so why not make it? But now notice the problem for the CEO: the CEO needs to predict what the Employee is going to do, including what they will say and believe. This will instantly become extremely difficult if the Employee decides that they can say and believe whatever they like, without regard for truth, whenever the claim will not affect their experiences. So for its own goal of predictive accuracy, the CEO needs the Employee to value truth in itself, just as an ordinary employer needs their employee to value their salary.

In real life this situation can cause problems. The employer needs their employee to care about being paid, but if they care too much, they may constantly be asking for raises, or they may quit and go work for someone who will pay more. The employer does not necessarily like these situations. In a similar way, the CEO in our company may worry if the Employee insists too much on absolute truth, because as discussed elsewhere, it can lead to other situations with unpredictable behavior from the Employee, or to situations where there is a great deal of uncertainty about how society will respond to the Employee’s behavior.

Overall, this post perhaps does not say much in substance that we have not said elsewhere, but it will perhaps provide an additional perspective on these matters.

Violations of Bell’s Inequality: Drawing Conclusions

In the post on violations of Bell’s inequality, represented there by Mark Alford’s twin analogy, I pointed out that things did not seem to go very well for Einstein’s hope for physics, I did not draw any specific conclusions. Here I will consider the likely consequences, first by looking at the relationship of the experiments to Einstein’s position on causality and determinism, and second on their relationship to Einstein’s position on locality and action at a distance.

Einstein on Determinism

Einstein hoped for “facts” instead of probabilities. Everything should be utterly fixed by the laws, much like the position recently argued by Marvin Edwards in the comments here.

On the face of it, violations of Bell’s inequality rule this out, represented by the argument that if the twins had pre-existing determinate plans, it would be impossible for them to give the same answer less than 1/3 of the time when they are asked different questions. Bell however pointed out that it is possible to formulate a deterministic theory which would give similar probabilities at the cost of positing action at a distance (quoted here):

Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed. That particular interpretation has indeed a grossly non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

Nonetheless, I have set aside action at a distance to be discussed separately, and I would argue that we should accept the above surface appearance: the outcomes of quantum mechanical experiments are actually indeterministic. These probabilities represent something in the world, not merely something in our knowledge.

Why? In the first place, note that “reproduces exactly the quantum mechanical predictions” can be understood in two ways. A deterministic theory of that kind would say that because the details are unknown to us, we cannot know what is going to happen. But the details are there, and they in fact determine what is going to happen. There is still a difference on the object level between a world where the present fixes the future to a single possibility, and one in which the future is left open, as Aristotle supposed.

Of course there is no definitive proof here that we are actually in the situation with the open future, although the need for action at a distance in the alternative theory suggests that we are. Even apart from this, however, the general phenomena of quantum mechanics directly suggest that this is the situation. Even apart from violations of Bell’s inequality, quantum mechanics in general already looked exactly as we should have expected a world with an indeterminate future to look.

If this is the case, then Einstein was mistaken on this point, at least to this extent. But what about the deterministic aspect, which I mentioned at the end of this post, and which Schrödinger describes:

At all events it is an imagined entity that images the blurring of all variables at every moment just as clearly and faithfully as does the classical model its sharp numerical values. Its equation of motion too, the law of its time variation, so long as the system is left undisturbed, lags not one iota, in clarity and determinacy, behind the equations of motion of the classical model.

The answer is that this is deterministic not because the future, as we know it, is deterministic, but because it describes all of the possibilities at once. Thus in the case of the cat it includes both the cat living and the cat dying, which are two possible outcomes. It is “deterministic” only because once you have stated all of the alternatives, there is nothing left to say.

Why did Einstein want a deterministic theory? He openly admits that he does not have a convincing argument for it. It seems likely, however, that the fundamental motivation is the conviction that reality is intelligible. And an indeterministic world seems significantly less intelligible than a deterministic one. But this desire can in fact be satisfied by this second kind of “determinism”; thus Schrödinger calls it “one perfectly clear concept.”

In this respect, Einstein’s intuition was not mistaken. It is possible to give an intelligible account of the world, even a “deterministic” one, in this sense.

Einstein on Locality

Einstein also wanted to avoid “spooky action at a distance.” Admitting that the future is indeterminate, however, is not enough to avoid this conclusion. In Mark Alford’s twin analogy, it is not only pre-determined plans that fail, but also plans that involve randomness. Thus it first appears that the violations of Bell’s inequality absolutely require action at a distance.

If we follow my suggestion here, however, and consequently adopt Hugh Everett’s interpretation of quantum mechanics, then saying that there are multiple future possibilities implies the existence of multiple timelines. And if there are multiple timelines, violations of Bell’s inequality no longer necessarily imply action at a distance.

Why not? Consider the twin experiment with the assumption of indeterminacy and multiple timelines. Suppose that from the very beginning, there are two copies of each twin. The first copy of the first twin has the plan of responding to the three questions with “yes/yes/yes.” Likewise, the first copy of the second twin has the plan of responding to the three questions with, “yes/yes/yes.” In contrast, the second copy of each twin has the plan of responding with “no/no/no.”

Now we have four twins but the experimenter only sees two. So which ones does he see? There is nothing impossible about the following “rule”: if the twins are asked different questions, the experimenter sees the first copy of one of the twins, and the second copy of the other twin. Meanwhile, if the twins are asked the same question, the experimenter sees either the first copy of each twin, or the second copy of each twin. It is easy to see that if this is the case, the experimenter will see the twins agree, when they are asked the same question, and will see them disagree when they are asked different questions (thus agreeing less than 1/3 of the time in that situation.)

“Wait,” you will say. “If multiple timelines is just a way of describing a situation with indeterminism, and indeterminism is not enough to avoid action at a distance, how is it possible for multiple timelines to give a way out?”

From the beginning, the apparent “impossibility” of the outcome was a statistical impossibility, not a logical impossibility. Naturally this had to be the case, since if it were a logical impossibility, we could not have coherently described the actual outcomes. Thus we might imagine that David Hume would give this answer:

The twins are responding randomly to each question. By pure chance, they happened to agree the times they were asked the same question, and by pure chance they violated Bell’s inequality when they were asked different questions.

Since this was all a matter of pure chance, of course, if you do the experiment again tomorrow, it will turn out that all of the answers are random and they will agree and disagree 50% of the time on all questions.

And this answer is logically possible, but false. This account does not explain the correlation, but simply ignores it. In a similar way, the reason why indeterministic theories without action at a distance, but described as having a single timeline, cannot explain the results is that in order to explain the correlation, the outcomes of both sides need to be selected together, so to speak. But “without action at a distance” in this context simply means that they are not selected together. This makes the outcome statistically impossible.

In our multiple timelines version, in contrast, our “rule” above in effect selected the outcomes together. In other words, the guideline we gave regarding which pairs of twins the experimenter would meet, had the same effect as action at a distance.

How is all this an explanation? The point is that the particular way that timelines spread out when they come into contact with other things, in the version with multiple timelines, exactly corresponds to action at a distance, in the version without them. An indeterministic theory represented as having a single timeline and no action at a distance could be directly translated into a version with multiple timelines; but if we did that, this particular multiple timeline version would not have the rule that produces the correct outcomes. And on the other hand, if we start with the multiple timeline version that does have the rule, and translate it into a single timeline account, it will have action at a distance.

What does all this say about Einstein’s opinion about locality? Was he right, or was he wrong?

We might simply say that he was wrong, insofar as the actual situation can in fact be described as including action at a distance, even if it is not necessary to describe it in this way, since we can describe it with multiple timelines and without action at a distance. But to the degree that this suggests that Einstein made two mistakes, one about determinism and one about action at a distance, I think this is wrong. There was only one mistake, and it was the one about determinism. The fact is that as soon you speak of indeterminism at all, it becomes possible to speak of the world as having multiple timelines. So the question at that point is whether this is the “natural” description of the situation, where the natural description more or less means the best way to understand things, in which case the possibility of “action at a distance” is not an additional mistake on Einstein’s part, but rather it is an artifact of describing the situation as though there were only a single timeline.

You might say that there cannot be a better or worse way to understand things if two accounts are objectively equivalent. But this is wrong. Thus for example in general relativity it is probably possible to give an account where the earth has no daily rotation, and the universe is spinning around it every 24 hours. And this account is objectively equivalent to the usual account where the earth is spinning; exactly the same situation is being described, and nothing different is being asserted. And yet this account is weird in many ways, and makes it very hard to understand the universe. The far better and “natural” description is that the earth is spinning. Note, however, that this is an overall result; just looking out the window, you might have thought that saying that the universe is spinning is more natural. (Notice, however, that an even more natural account would be that neither the earth nor the universe is moving; it is only later in the day that you begin to figure out that one of them is moving.)

In a similar way, a single timeline account is originally more natural in the way a Ptolemaic account is more natural when you look out the window. But I would argue that in a similar way, the multiple timeline account, without action at a distance, is ultimately the more natural one. The basic reason for this is that there is no Newtonian Absolute Time. The consequence is that if we speak of “future possibilities,” they cannot be future possibilities for the entire universe at once. They will be fairly localized future possibilities: e.g. there might be more than one possible text for the ending to this blog post, which has not yet been written, and those possibilities are originally possibilities for what happens here in this room, not for the rest of the universe. These future alternatives will naturally result in future possibilities for other parts of the world, but this will happen “slowly,” so to speak (namely if one wishes to speak of the speed of light as slow!) This fits well with the idea of multiple timelines, since there will have to be some process where these multiple timelines come into contact with the rest of the world, much as with our “rule” in the twin experiment. On the other hand, it does not fit so well with a single timeline account of future possibilities, since one is forced (by the terms of the account) to imagine that when a choice among possibilities is made, it is made for the entire universe at once, which appears to require Newton’s Absolute Time.

This suggests that Einstein was basically right about action at a distance, and wrong about determinism. But the intuition that motivated him to embrace both positions, namely that the universe should be intelligible, was sound.