Violations of Bell’s Inequality: Drawing Conclusions

In the post on violations of Bell’s inequality, represented there by Mark Alford’s twin analogy, I pointed out that things did not seem to go very well for Einstein’s hope for physics, I did not draw any specific conclusions. Here I will consider the likely consequences, first by looking at the relationship of the experiments to Einstein’s position on causality and determinism, and second on their relationship to Einstein’s position on locality and action at a distance.

Einstein on Determinism

Einstein hoped for “facts” instead of probabilities. Everything should be utterly fixed by the laws, much like the position recently argued by Marvin Edwards in the comments here.

On the face of it, violations of Bell’s inequality rule this out, represented by the argument that if the twins had pre-existing determinate plans, it would be impossible for them to give the same answer less than 1/3 of the time when they are asked different questions. Bell however pointed out that it is possible to formulate a deterministic theory which would give similar probabilities at the cost of positing action at a distance (quoted here):

Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed. That particular interpretation has indeed a grossly non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

Nonetheless, I have set aside action at a distance to be discussed separately, and I would argue that we should accept the above surface appearance: the outcomes of quantum mechanical experiments are actually indeterministic. These probabilities represent something in the world, not merely something in our knowledge.

Why? In the first place, note that “reproduces exactly the quantum mechanical predictions” can be understood in two ways. A deterministic theory of that kind would say that because the details are unknown to us, we cannot know what is going to happen. But the details are there, and they in fact determine what is going to happen. There is still a difference on the object level between a world where the present fixes the future to a single possibility, and one in which the future is left open, as Aristotle supposed.

Of course there is no definitive proof here that we are actually in the situation with the open future, although the need for action at a distance in the alternative theory suggests that we are. Even apart from this, however, the general phenomena of quantum mechanics directly suggest that this is the situation. Even apart from violations of Bell’s inequality, quantum mechanics in general already looked exactly as we should have expected a world with an indeterminate future to look.

If this is the case, then Einstein was mistaken on this point, at least to this extent. But what about the deterministic aspect, which I mentioned at the end of this post, and which Schrödinger describes:

At all events it is an imagined entity that images the blurring of all variables at every moment just as clearly and faithfully as does the classical model its sharp numerical values. Its equation of motion too, the law of its time variation, so long as the system is left undisturbed, lags not one iota, in clarity and determinacy, behind the equations of motion of the classical model.

The answer is that this is deterministic not because the future, as we know it, is deterministic, but because it describes all of the possibilities at once. Thus in the case of the cat it includes both the cat living and the cat dying, which are two possible outcomes. It is “deterministic” only because once you have stated all of the alternatives, there is nothing left to say.

Why did Einstein want a deterministic theory? He openly admits that he does not have a convincing argument for it. It seems likely, however, that the fundamental motivation is the conviction that reality is intelligible. And an indeterministic world seems significantly less intelligible than a deterministic one. But this desire can in fact be satisfied by this second kind of “determinism”; thus Schrödinger calls it “one perfectly clear concept.”

In this respect, Einstein’s intuition was not mistaken. It is possible to give an intelligible account of the world, even a “deterministic” one, in this sense.

Einstein on Locality

Einstein also wanted to avoid “spooky action at a distance.” Admitting that the future is indeterminate, however, is not enough to avoid this conclusion. In Mark Alford’s twin analogy, it is not only pre-determined plans that fail, but also plans that involve randomness. Thus it first appears that the violations of Bell’s inequality absolutely require action at a distance.

If we follow my suggestion here, however, and consequently adopt Hugh Everett’s interpretation of quantum mechanics, then saying that there are multiple future possibilities implies the existence of multiple timelines. And if there are multiple timelines, violations of Bell’s inequality no longer necessarily imply action at a distance.

Why not? Consider the twin experiment with the assumption of indeterminacy and multiple timelines. Suppose that from the very beginning, there are two copies of each twin. The first copy of the first twin has the plan of responding to the three questions with “yes/yes/yes.” Likewise, the first copy of the second twin has the plan of responding to the three questions with, “yes/yes/yes.” In contrast, the second copy of each twin has the plan of responding with “no/no/no.”

Now we have four twins but the experimenter only sees two. So which ones does he see? There is nothing impossible about the following “rule”: if the twins are asked different questions, the experimenter sees the first copy of one of the twins, and the second copy of the other twin. Meanwhile, if the twins are asked the same question, the experimenter sees either the first copy of each twin, or the second copy of each twin. It is easy to see that if this is the case, the experimenter will see the twins agree, when they are asked the same question, and will see them disagree when they are asked different questions (thus agreeing less than 1/3 of the time in that situation.)

“Wait,” you will say. “If multiple timelines is just a way of describing a situation with indeterminism, and indeterminism is not enough to avoid action at a distance, how is it possible for multiple timelines to give a way out?”

From the beginning, the apparent “impossibility” of the outcome was a statistical impossibility, not a logical impossibility. Naturally this had to be the case, since if it were a logical impossibility, we could not have coherently described the actual outcomes. Thus we might imagine that David Hume would give this answer:

The twins are responding randomly to each question. By pure chance, they happened to agree the times they were asked the same question, and by pure chance they violated Bell’s inequality when they were asked different questions.

Since this was all a matter of pure chance, of course, if you do the experiment again tomorrow, it will turn out that all of the answers are random and they will agree and disagree 50% of the time on all questions.

And this answer is logically possible, but false. This account does not explain the correlation, but simply ignores it. In a similar way, the reason why indeterministic theories without action at a distance, but described as having a single timeline, cannot explain the results is that in order to explain the correlation, the outcomes of both sides need to be selected together, so to speak. But “without action at a distance” in this context simply means that they are not selected together. This makes the outcome statistically impossible.

In our multiple timelines version, in contrast, our “rule” above in effect selected the outcomes together. In other words, the guideline we gave regarding which pairs of twins the experimenter would meet, had the same effect as action at a distance.

How is all this an explanation? The point is that the particular way that timelines spread out when they come into contact with other things, in the version with multiple timelines, exactly corresponds to action at a distance, in the version without them. An indeterministic theory represented as having a single timeline and no action at a distance could be directly translated into a version with multiple timelines; but if we did that, this particular multiple timeline version would not have the rule that produces the correct outcomes. And on the other hand, if we start with the multiple timeline version that does have the rule, and translate it into a single timeline account, it will have action at a distance.

What does all this say about Einstein’s opinion about locality? Was he right, or was he wrong?

We might simply say that he was wrong, insofar as the actual situation can in fact be described as including action at a distance, even if it is not necessary to describe it in this way, since we can describe it with multiple timelines and without action at a distance. But to the degree that this suggests that Einstein made two mistakes, one about determinism and one about action at a distance, I think this is wrong. There was only one mistake, and it was the one about determinism. The fact is that as soon you speak of indeterminism at all, it becomes possible to speak of the world as having multiple timelines. So the question at that point is whether this is the “natural” description of the situation, where the natural description more or less means the best way to understand things, in which case the possibility of “action at a distance” is not an additional mistake on Einstein’s part, but rather it is an artifact of describing the situation as though there were only a single timeline.

You might say that there cannot be a better or worse way to understand things if two accounts are objectively equivalent. But this is wrong. Thus for example in general relativity it is probably possible to give an account where the earth has no daily rotation, and the universe is spinning around it every 24 hours. And this account is objectively equivalent to the usual account where the earth is spinning; exactly the same situation is being described, and nothing different is being asserted. And yet this account is weird in many ways, and makes it very hard to understand the universe. The far better and “natural” description is that the earth is spinning. Note, however, that this is an overall result; just looking out the window, you might have thought that saying that the universe is spinning is more natural. (Notice, however, that an even more natural account would be that neither the earth nor the universe is moving; it is only later in the day that you begin to figure out that one of them is moving.)

In a similar way, a single timeline account is originally more natural in the way a Ptolemaic account is more natural when you look out the window. But I would argue that in a similar way, the multiple timeline account, without action at a distance, is ultimately the more natural one. The basic reason for this is that there is no Newtonian Absolute Time. The consequence is that if we speak of “future possibilities,” they cannot be future possibilities for the entire universe at once. They will be fairly localized future possibilities: e.g. there might be more than one possible text for the ending to this blog post, which has not yet been written, and those possibilities are originally possibilities for what happens here in this room, not for the rest of the universe. These future alternatives will naturally result in future possibilities for other parts of the world, but this will happen “slowly,” so to speak (namely if one wishes to speak of the speed of light as slow!) This fits well with the idea of multiple timelines, since there will have to be some process where these multiple timelines come into contact with the rest of the world, much as with our “rule” in the twin experiment. On the other hand, it does not fit so well with a single timeline account of future possibilities, since one is forced (by the terms of the account) to imagine that when a choice among possibilities is made, it is made for the entire universe at once, which appears to require Newton’s Absolute Time.

This suggests that Einstein was basically right about action at a distance, and wrong about determinism. But the intuition that motivated him to embrace both positions, namely that the universe should be intelligible, was sound.

Open Past

Suppose that Aristotle was right, and the future is open. What would things be like in detail?

There are many ways things could go, so for concreteness let’s assume that (in some local area) there are approximately 100 possibilities for the next second, and approximately 100 x 100, or 10,000 possibilities for the next two seconds.

Then the question arises: do some of the two-second outcomes have overlapping paths? In other words, suppose we take the first option in the first second. Are all of the outcomes we can reach different from all of the outcomes we could reach if we took the second option in the first second?

It is at least plausible that some overlapping paths can exist. For example, something might swerve to the left in the first second, and then to the right in the second second, ending up just where it would have been if it had swerved to the right in the first second and to the left in the second. Let’s suppose it turns out this way. Thus we have situation A and time A, and situation B and time B, with a first and second path, both of which lead from situation A at time A, to situation B at time B.

When we get to situation B, what does the world look like? In particular, if someone is in situation B and says, “let’s look at the world and figure out what just happened,” what does it look like? Consider three different accounts:

  1. It looks like situation B except also that it looks like we took the first path
  2. It looks like situation B except also that it looks like we took the second path
  3. It looks like situation B, and we can’t tell which path was taken

The problem is evident. These are three different situations. If things currently look different, the situation is different. So these cannot possibly all be descriptions of situation B. And in particular, only the third is a reasonable description of the situation we should expect. We have set up the situation so that there is no difference in our current situation, whether the first or second path was taken. So of course in situation B it will be impossible to know which path was taken.

But what does that look like, exactly? “We don’t know” is not a description of a situation, but a description of our state of knowledge. What is it about situation B that makes it impossible to tell which path was taken? What happens if you describe the situation as exactly as possible, and then explain why that “exact” description still does not determine which path was taken?

Consider again Schrödinger’s confusion about his cat. The reason why the notion of “bluriness” came up at all was not merely that the wave equation seems to describe something blurred, but also because the actual results of experiments suggest that something blurred took place. Thus for example in double-slit experiments, interference patterns suggest that something is going through both slits at once, while if detectors are added to determine what, if anything, is going through the slits, one seems to find that only one slit is used at a time, and the interference pattern goes away.

This fits the above description of situation A and situation B  almost perfectly. In the double slit experiment, there are two paths that could be taken to arrive at the same outcome. But that “same outcome” is not one in which it looks like the first path was taken, nor one in which it looks like the second path was taken, but one in which the outcome’s relationship to the path appears to be confused. And on the other hand, if we can tell which path was taken, as we can when we add detectors, there is no such confusion, because the outcomes no longer overlap; the outcome where the first detector registers is not the same as an outcome where the second detector registers.

In this sense, quantum theory is simply the situation where Aristotle was right about the indeterminacy of the future, with the minor addition that it turned out to be possible to get to the same future by more than route.

Note, however, that this implies the worrisome outcome that I suggested in that post. Just as the future is indeterminate, so is the past. Just as the present has many possible future outcomes, there are many past paths that could have resulted in the present.

Schrödinger’s Cat

Erwin Schrödinger describes the context for his thought experiment with a cat:

The other alternative consists of granting reality only to the momentarily sharp determining parts – or in more general terms to each variable a sort of realization just corresponding to the quantum mechanical statistics of this variable at the relevant moment.

That it is in fact not impossible to express the degree and kind of blurring of all variables in one perfectly clear concept follows at once from the fact that Q.M. as a matter of fact has and uses such an instrument, the so-called wave function or psi-function, also called system vector. Much more is to be said about it further on. That it is an abstract, unintuitive mathematical construct is a scruple that almost always surfaces against new aids to thought and that carries no great message. At all events it is an imagined entity that images the blurring of all variables at every moment just as clearly and faithfully as does the classical model its sharp numerical values. Its equation of motion too, the law of its time variation, so long as the system is left undisturbed, lags not one iota, in clarity and determinacy, behind the equations of motion of the classical model. So the latter could be straight-forwardly replaced by the psi-function, so long as the blurring is confined to atomic scale, not open to direct control. In fact the function has provided quite intuitive and convenient ideas, for instance the “cloud of negative electricity” around the nucleus, etc. But serious misgivings arise if one notices that the uncertainty affects macroscopically tangible and visible things, for which the term “blurring” seems simply wrong. The state of a radioactive nucleus is presumably blurred in such a degree and fashion that neither the instant of decay nor the direction, in which the emitted alpha-particle leaves the nucleus, is well-established. Inside the nucleus, blurring doesn’t bother us. The emerging particle is described, if one wants to explain intuitively, as a spherical wave that continuously emanates in all directions and that impinges continuously on a surrounding luminescent screen over its full expanse. The screen however does not show a more or less constant uniform glow, but rather lights up at one instant at one spot – or, to honor the truth, it lights up now here, now there, for it is impossible to do the experiment with only a single radioactive atom. If in place of the luminescent screen one uses a spatially extended detector, perhaps a gas that is ionised by the alpha-particles, one finds the ion pairs arranged along rectilinear columns, that project backwards on to the bit of radioactive matter from which the alpha-radiation comes (C.T.R. Wilson’s cloud chamber tracks, made visible by drops of moisture condensed on the ions).

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer which shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted to the atomic domain becomes transformed into macroscopic indeterminacy, which can then be resolved by direct observation. That prevents us from so naively accepting as valid a “blurred model” for representing reality. In itself it would not embody anything unclear or contradictory. There is a difference between a shaky or out-of-focus photograph and a snapshot of clouds and fog banks.

We see here the two elements described at the end of this earlier post. The psi-function is deterministic, but there seems to be an element of randomness when someone comes to check on the cat.

Hugh Everett amusingly describes a similar experiment performed on human beings (but without killing anyone):

Isolated somewhere out in space is a room containing an observer, A, who is about to perform a measurement upon a system S. After performing his measurement he will record the result in his notebook. We assume that he knows the state function of S (perhaps as a result of previous measurement), and that it is not an eigenstate of the measurement he is about to perform. A, being an orthodox quantum theorist, then believes that the outcome of his measurement is undetermined and that the process is correctly described by Process 1 [namely a random determination caused by measurement].

In the meantime, however, there is another observer, B, outside the room, who is in possession of the state function of the entire room, including S, the measuring apparatus, and A, just prior to the measurement. B is only interested in what will be found in the notebook one week hence, so he computes the state function of the room for one week in the future according to Process 2 [namely the deterministic  wave function]. One week passes, and we find B still in possession of the state function of the room, which this equally orthodox quantum theorist believes to be a complete description of the room and its contents. If B’s state function calculation tells beforehand exactly what is going to be in the notebook, then A is incorrect in his belief about the indeterminacy of the outcome of his measurement. We therefore assume that B’s state function contains non-zero amplitudes over several of the notebook entries.

At this point, B opens the door to the room and looks at the notebook (performs his observation.) Having observed the notebook entry, he turns to A and informs him in a patronizing manner that since his (B’s) wave function just prior to his entry into the room, which he knows to have been a complete description of the room and its contents, had non-zero amplitude over other than the present result of the measurement, the result must have been decided only when B entered the room, so that A, his notebook entry, and his memory about what occurred one week ago had no independent objective existence until the intervention by B. In short, B implies that A owes his present objective existence to B’s generous nature which compelled him to intervene on his behalf. However, to B’s consternation, A does not react with anything like the respect and gratitude he should exhibit towards B, and at the end of a somewhat heated reply, in which A conveys in a colorful manner his opinion of B and his beliefs, he rudely punctures B’s ego by observing that if B’s view is correct, then he has no reason to feel complacent, since the whole present situation may have no objective existence, but may depend upon the future actions of yet another observer.

Schrödinger’s problem was that the wave equation seems to describe something “blurred,” but if we assume that is because something blurred exists, it seems to contradict our experience which is of something quite distinct: a live cat or a dead cat, but not something in between.

Everett proposes that his interpretation of quantum mechanics is able to resolve this difficulty. After presenting other interpretations, he proposes his own (“Alternative 5”):

Alternative 5: To assume the universal validity of the quantum description, by the complete abandonment of Process 1 [again, this was the apparently random measurement process]. The general validity of pure wave mechanics, without any statistical assertions, is assumed for all physical systems, including observers and measuring apparata. Observation processes are to be described completely by the state function of the composite system which includes the observer and his object-system, and which at all times obeys the wave equation (Process 2).

It is evident that Alternative 5 is a theory of many advantages. It has the virtue of logical simplicity and it is complete in the sense that it is applicable to the entire universe. All processes are considered equally (there are no “measurement processes” which play any preferred role), and the principle of psycho-physical parallelism is fully maintained. Since the universal validity of the state function is asserted, one can regard the state functions themselves as the fundamental entities, and one can even consider the state function of the whole universe. In this sense this theory can be called the theory of the “universal wave function,” since all of physics is presumed to follow from this function alone. There remains, however, the question whether or not such a theory can be put into correspondence with our experience.

This present thesis is devoted to showing that this concept of a universal wave mechanics, together with the necessary correlation machinery for its interpretation, forms a logically self consistent description of a universe in which several observers are at work.

Ultimately, Everett’s response to Schrödinger is that the cat is indeed “blurred,” and that this never goes away. When someone checks on the cat, the person checking is also “blurred,” becoming a composite of someone seeing a dead cat and someone seeing a live cat. However, these are in effect two entirely separate worlds, one in which someone sees a live cat, and one in which someone sees a dead cat.

Everett mentions “the necessary correlation machinery for its interpretation,” because a mathematical theory of physics as such does not necessarily say that anyone should see anything in particular. So for example when Newton when says that there is a gravitational attraction between masses inversely proportional to the square of their distance, what exactly should we expect to see, given that? Obviously there is no way to answer this without adding something, and ultimately we need to add something non-mathematical, namely something about the way our experiences work.

I will not pretend to judge whether or not Everett does a good job defending his position. There is an interesting point here, whether or not his defense is ultimately a good one. “Orthodox” quantum mechanics, as Everett calls it, only gives statistical predictions about the future, and as long as nothing is added to the theory, it implies that deterministic predictions are impossible. It follows that if the position in our last post, on an open future, was correct, it must be possible to explain the results of quantum mechanics in terms of many worlds or multiple timelines. And I do not merely mean that we can give the same predictions with a one-world account or with a many world account. I mean that there must be a many-world account such that its contents are metaphysically identical to the contents of a one-world account with an open future.

This would nonetheless leave undetermined the question of what sort of account would be most useful to us in practice.