Revisiting Russell on Cause

We discussed Bertrand Russell’s criticism of the first cause argument here. As I said there, he actually suggests, although without specifically making the claim, that there is no such thing as a cause, when he says:

That argument, I suppose, does not carry very much weight nowadays, because, in the first place, cause is not quite what it used to be. The philosophers and the men of science have got going on cause, and it has not anything like the vitality it used to have.

This is absurd, and it is especially objectionable that he employs this method of insinuation instead of attempting to make an argument. Nonetheless, let me attempt to argue on Russell’s behalf for a moment. It is perhaps not necessary for him to say that there is no such thing as a cause. Suppose he accepts my account of cause as an explanatory origin. Note that this is not purely an objective relationship existing in the world. It includes a specific relationship with our mind: we call something a cause when it is not only an origin, but it also explains something to us. The relatively “objective” relationship is simply that of origin.

A series of causes, since it is also a series of explanations, absolutely must have a first, since otherwise all explanatory force will be removed. But suppose Russell responds: it does not matter. Sure, this is how explanations work. But there is nothing to prevent the world from working differently. It may be that origins, namely the relationship on the objective side, do consist of infinite series. This might make it impossible to explain the world, but that would just be too bad, wouldn’t it? We already know that people have all sorts of desires for knowledge that cannot be satisfied. A complete account of the world is impossible in principle, and even in practice we can only obtain relatively local knowledge, leaving us ignorant of remote things. So you might feel a need of a first cause to make the world intelligible, Russell might say, but that is no proof at all that there is any series of origins with a first. For example, consider material causes. Large bodies are made of atoms, and atoms of smaller particles, namely electrons, protons, and neutrons. These smaller particles are made of yet smaller particles called quarks. There is no proof that this process does not go on forever. Indeed, the series would cease to explain anything if it did, but so what? Reality does not have to explain itself to you.

In response, consider the two following theories of water:

First theory: water is made of hydrogen and oxygen.

Second theory: every body of water has two parts, which we can call the first part and the second part. Each of the parts themselves has two parts, which we can call the first part of the first part, the second part of the first part, the first part of the second part, and the second part of the second part. This goes on ad infinitum.

Are these theories true? I presume the reader accepts the first theory. What about the second? We are probably inclined to say something like, “What does this mean, exactly?” But the very fact that the second theory is extremely vague means that we can probably come up with some interpretation that will make it true, depending in its details on the details of reality. Nonetheless, it is a clearly useless theory. And it is useless precisely because it cannot explain anything. There is no “causality” in the second theory, not even material causality. There is an infinite series of origins, but no explanation, and so no causes.

The first theory, on the other hand, is thought to be explanatory, and to provide material causes, because we implicitly suppose that we cannot go on forever in a similar way. It may be that hydrogen and oxygen are made up of other things: but we assume that this will not go on forever, at least with similar sorts of division.

But what if it does? It is true, in fact, that if it turns out that one can continue to break down particles into additional particles in a relatively similar manner ad infinitum, then “water is made of hydrogen and oxygen” will lose all explanatory force, and will not truly be a causal account, even in terms of material causes, even if the statement itself remains true. It would not follow, however, that causal accounts are impossible. It would simply follow that we chose the wrong account, just as one would be choosing wrongly if one attempted to explain water with the second theory above. The truth of the second theory is irrelevant; it is wrong as an explanation even if it is true.

As I have argued in a number of places, nature is not in the business of counting things. But it necessarily follows from this that it also does not call things finite or infinite; we are the ones who do that. So if you break down the world in such a way that origins are infinite, you will not be able to understand the world. That is not the world’s problem, but your problem. You can fix that by breaking down the world in such a way that origins are finite.

Perhaps Russell will continue to object. How do you know that there is any possible breakdown of the world which makes origins finite? But this objection implies the fully skeptical claim that nothing can be understood, or at least that it may turn out that nothing can be understood. As I have said elsewhere, this particular kind of skeptical claim implies a contradiction, since it implies that the same thing is known and unknown. This is the case even if you say “it might be that way,” since you must understand what you are saying when you say it might be that way.

The Actual Infinite

There are good reasons to think that actual infinities are possible in the real world. In the first place, while the size and shape of the universe are not settled issues, the generally accepted theory fits better with the idea that the universe is physically infinite than with the idea that it is finite.

Likewise, the universe is certainly larger than the size of the observable universe, namely about 93 billion light years in diameter. Supposing you have a probability distribution which assigns a finite probability to the claim that the universe is physically infinite, there is no consistent probability distribution which will not cause the probability of an infinite universe to go to 100% at the limit, as you exclude smaller finite sizes. But if someone had assigned a reasonable probability distribution before modern physical science existed, it would very likely have been one that make the probability of an infinite universe go very high by the time the universe was confirmed to be its present size. Therefore we too should think that the universe is very probably infinite. In principle, this argument is capable of refuting even purported demonstrations of the impossibility of an actual infinite, since there is at least some small chance that these purported demonstrations are all wrong.

Likewise, almost everyone accepts the possibility of an infinite future. Even the heat death of the universe would not prevent the passage of infinite time, and a religious view of the future also generally implies the passage of infinite future time. Even if heaven is supposed to be outside time in principle, in practice there would still be an infinite number of future human acts. If eternalism or something similar is true, then an infinite future in itself implies an actual infinite. And even if such a theory is not true, it is likely that a potentially infinite future implies the possibility of an actual infinite, because any problematic or paradoxical results from an actual infinite can likely be imitated in some way in the case of an infinite future.

On the other hand, there are good reasons to think that actual infinities are not possible in the real world. Positing infinities results in paradoxical or contradictory results in very many cases, and the simplest and therefore most likely way to explain this is to admit that infinities are simply impossible in general, even in the cases where we have not yet verified this fact.

An actual infinite also seems to imply an infinite regress in causality, and such a regress is impossible. We can see this by considering the material cause. Suppose the universe is physically infinite, and contains an infinite number of stars and planets. Then the universe is composed of the solar system together with the rest of the universe. But the rest of the universe will be composed of another stellar system together with the remainder, and so on. So there will be an infinite regress of material causality, which is just as impossible with material causality as with any other kind of causality.

Something similar is implied by St. Thomas’s argument against an infinite multitude:

This, however, is impossible; since every kind of multitude must belong to a species of multitude. Now the species of multitude are to be reckoned by the species of numbers. But no species of number is infinite; for every number is multitude measured by one. Hence it is impossible for there to be an actually infinite multitude, either absolute or accidental.

We can look at this in terms of our explanation of defining numbers. This explanation works only for finite numbers, and an infinite number could not be defined in such a way, precisely because it would result in an infinite regress. This leads us back to the first argument above against infinities: an infinity is intrinsically undefined and unintelligible, and for that reason leads to paradoxes. Someone might say that something unintelligible cannot be understood but is not impossible; but this is no different from Bertrand Russell saying that there is no reason for things not to come into being from nothing, without a cause. Such a position is unreasonable and untrue.