Violations of Bell’s Inequality: Drawing Conclusions

In the post on violations of Bell’s inequality, represented there by Mark Alford’s twin analogy, I pointed out that things did not seem to go very well for Einstein’s hope for physics, I did not draw any specific conclusions. Here I will consider the likely consequences, first by looking at the relationship of the experiments to Einstein’s position on causality and determinism, and second on their relationship to Einstein’s position on locality and action at a distance.

Einstein on Determinism

Einstein hoped for “facts” instead of probabilities. Everything should be utterly fixed by the laws, much like the position recently argued by Marvin Edwards in the comments here.

On the face of it, violations of Bell’s inequality rule this out, represented by the argument that if the twins had pre-existing determinate plans, it would be impossible for them to give the same answer less than 1/3 of the time when they are asked different questions. Bell however pointed out that it is possible to formulate a deterministic theory which would give similar probabilities at the cost of positing action at a distance (quoted here):

Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed. That particular interpretation has indeed a grossly non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

Nonetheless, I have set aside action at a distance to be discussed separately, and I would argue that we should accept the above surface appearance: the outcomes of quantum mechanical experiments are actually indeterministic. These probabilities represent something in the world, not merely something in our knowledge.

Why? In the first place, note that “reproduces exactly the quantum mechanical predictions” can be understood in two ways. A deterministic theory of that kind would say that because the details are unknown to us, we cannot know what is going to happen. But the details are there, and they in fact determine what is going to happen. There is still a difference on the object level between a world where the present fixes the future to a single possibility, and one in which the future is left open, as Aristotle supposed.

Of course there is no definitive proof here that we are actually in the situation with the open future, although the need for action at a distance in the alternative theory suggests that we are. Even apart from this, however, the general phenomena of quantum mechanics directly suggest that this is the situation. Even apart from violations of Bell’s inequality, quantum mechanics in general already looked exactly as we should have expected a world with an indeterminate future to look.

If this is the case, then Einstein was mistaken on this point, at least to this extent. But what about the deterministic aspect, which I mentioned at the end of this post, and which Schrödinger describes:

At all events it is an imagined entity that images the blurring of all variables at every moment just as clearly and faithfully as does the classical model its sharp numerical values. Its equation of motion too, the law of its time variation, so long as the system is left undisturbed, lags not one iota, in clarity and determinacy, behind the equations of motion of the classical model.

The answer is that this is deterministic not because the future, as we know it, is deterministic, but because it describes all of the possibilities at once. Thus in the case of the cat it includes both the cat living and the cat dying, which are two possible outcomes. It is “deterministic” only because once you have stated all of the alternatives, there is nothing left to say.

Why did Einstein want a deterministic theory? He openly admits that he does not have a convincing argument for it. It seems likely, however, that the fundamental motivation is the conviction that reality is intelligible. And an indeterministic world seems significantly less intelligible than a deterministic one. But this desire can in fact be satisfied by this second kind of “determinism”; thus Schrödinger calls it “one perfectly clear concept.”

In this respect, Einstein’s intuition was not mistaken. It is possible to give an intelligible account of the world, even a “deterministic” one, in this sense.

Einstein on Locality

Einstein also wanted to avoid “spooky action at a distance.” Admitting that the future is indeterminate, however, is not enough to avoid this conclusion. In Mark Alford’s twin analogy, it is not only pre-determined plans that fail, but also plans that involve randomness. Thus it first appears that the violations of Bell’s inequality absolutely require action at a distance.

If we follow my suggestion here, however, and consequently adopt Hugh Everett’s interpretation of quantum mechanics, then saying that there are multiple future possibilities implies the existence of multiple timelines. And if there are multiple timelines, violations of Bell’s inequality no longer necessarily imply action at a distance.

Why not? Consider the twin experiment with the assumption of indeterminacy and multiple timelines. Suppose that from the very beginning, there are two copies of each twin. The first copy of the first twin has the plan of responding to the three questions with “yes/yes/yes.” Likewise, the first copy of the second twin has the plan of responding to the three questions with, “yes/yes/yes.” In contrast, the second copy of each twin has the plan of responding with “no/no/no.”

Now we have four twins but the experimenter only sees two. So which ones does he see? There is nothing impossible about the following “rule”: if the twins are asked different questions, the experimenter sees the first copy of one of the twins, and the second copy of the other twin. Meanwhile, if the twins are asked the same question, the experimenter sees either the first copy of each twin, or the second copy of each twin. It is easy to see that if this is the case, the experimenter will see the twins agree, when they are asked the same question, and will see them disagree when they are asked different questions (thus agreeing less than 1/3 of the time in that situation.)

“Wait,” you will say. “If multiple timelines is just a way of describing a situation with indeterminism, and indeterminism is not enough to avoid action at a distance, how is it possible for multiple timelines to give a way out?”

From the beginning, the apparent “impossibility” of the outcome was a statistical impossibility, not a logical impossibility. Naturally this had to be the case, since if it were a logical impossibility, we could not have coherently described the actual outcomes. Thus we might imagine that David Hume would give this answer:

The twins are responding randomly to each question. By pure chance, they happened to agree the times they were asked the same question, and by pure chance they violated Bell’s inequality when they were asked different questions.

Since this was all a matter of pure chance, of course, if you do the experiment again tomorrow, it will turn out that all of the answers are random and they will agree and disagree 50% of the time on all questions.

And this answer is logically possible, but false. This account does not explain the correlation, but simply ignores it. In a similar way, the reason why indeterministic theories without action at a distance, but described as having a single timeline, cannot explain the results is that in order to explain the correlation, the outcomes of both sides need to be selected together, so to speak. But “without action at a distance” in this context simply means that they are not selected together. This makes the outcome statistically impossible.

In our multiple timelines version, in contrast, our “rule” above in effect selected the outcomes together. In other words, the guideline we gave regarding which pairs of twins the experimenter would meet, had the same effect as action at a distance.

How is all this an explanation? The point is that the particular way that timelines spread out when they come into contact with other things, in the version with multiple timelines, exactly corresponds to action at a distance, in the version without them. An indeterministic theory represented as having a single timeline and no action at a distance could be directly translated into a version with multiple timelines; but if we did that, this particular multiple timeline version would not have the rule that produces the correct outcomes. And on the other hand, if we start with the multiple timeline version that does have the rule, and translate it into a single timeline account, it will have action at a distance.

What does all this say about Einstein’s opinion about locality? Was he right, or was he wrong?

We might simply say that he was wrong, insofar as the actual situation can in fact be described as including action at a distance, even if it is not necessary to describe it in this way, since we can describe it with multiple timelines and without action at a distance. But to the degree that this suggests that Einstein made two mistakes, one about determinism and one about action at a distance, I think this is wrong. There was only one mistake, and it was the one about determinism. The fact is that as soon you speak of indeterminism at all, it becomes possible to speak of the world as having multiple timelines. So the question at that point is whether this is the “natural” description of the situation, where the natural description more or less means the best way to understand things, in which case the possibility of “action at a distance” is not an additional mistake on Einstein’s part, but rather it is an artifact of describing the situation as though there were only a single timeline.

You might say that there cannot be a better or worse way to understand things if two accounts are objectively equivalent. But this is wrong. Thus for example in general relativity it is probably possible to give an account where the earth has no daily rotation, and the universe is spinning around it every 24 hours. And this account is objectively equivalent to the usual account where the earth is spinning; exactly the same situation is being described, and nothing different is being asserted. And yet this account is weird in many ways, and makes it very hard to understand the universe. The far better and “natural” description is that the earth is spinning. Note, however, that this is an overall result; just looking out the window, you might have thought that saying that the universe is spinning is more natural. (Notice, however, that an even more natural account would be that neither the earth nor the universe is moving; it is only later in the day that you begin to figure out that one of them is moving.)

In a similar way, a single timeline account is originally more natural in the way a Ptolemaic account is more natural when you look out the window. But I would argue that in a similar way, the multiple timeline account, without action at a distance, is ultimately the more natural one. The basic reason for this is that there is no Newtonian Absolute Time. The consequence is that if we speak of “future possibilities,” they cannot be future possibilities for the entire universe at once. They will be fairly localized future possibilities: e.g. there might be more than one possible text for the ending to this blog post, which has not yet been written, and those possibilities are originally possibilities for what happens here in this room, not for the rest of the universe. These future alternatives will naturally result in future possibilities for other parts of the world, but this will happen “slowly,” so to speak (namely if one wishes to speak of the speed of light as slow!) This fits well with the idea of multiple timelines, since there will have to be some process where these multiple timelines come into contact with the rest of the world, much as with our “rule” in the twin experiment. On the other hand, it does not fit so well with a single timeline account of future possibilities, since one is forced (by the terms of the account) to imagine that when a choice among possibilities is made, it is made for the entire universe at once, which appears to require Newton’s Absolute Time.

This suggests that Einstein was basically right about action at a distance, and wrong about determinism. But the intuition that motivated him to embrace both positions, namely that the universe should be intelligible, was sound.

Spooky Action at a Distance

Albert Einstein objected to the usual interpretations of quantum mechanics because they seemed to him to imply “spooky action at a distance,” a phrase taken from a letter from Einstein to Max Born in 1947 (page 155 in this book):

I cannot make a case for my attitude in physics which you would consider at all reasonable. I admit, of course, that there is a considerable amount of validity in the statistical approach which you were the first to recognize clearly as necessary given the framework of the existing formalism. I cannot seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality in time and space, free from spooky actions at a distance. I am, however, not yet firmly convinced that it can really be achieved with a continuous field theory, although I have discovered a possible way of doing this which so far seems quite reasonable. The calculation difficulties are so great that I will be biting the dust long before I myself can be fully convinced of it. But I am quite convinced that someone will eventually come up with a theory whose objects, connected by laws, are not probabilities but considered facts, as used to be taken for granted until quite recently. I cannot, however, base this conviction on logical reasons, but can only produce my little finger as witness, that is, I offer no authority which would be able to command any kind of respect outside of my own hand.

Einstein has two objections: the theory seems to be indeterministic, and it also seems to imply action at a distance. He finds both of these implausible. He thinks physics should be deterministic, “as used to be taken for granted until quite recently,” and that all interactions should be local: things directly affect only things which are close by, and affect distant things only indirectly.

In many ways, things do not appear to have gone well for Einstein’s intuitions. John Bell constructed a mathematical argument, now known as Bell’s Theorem, that the predictions of quantum mechanics cannot be reproduced by the kind of theory desired by Einstein. Bell summarizes his point:

The paradox of Einstein, Podolsky and Rosen was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality. In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty. There have been attempts to show that even without such a separability or locality requirement no “hidden variable” interpretation of quantum mechanics is possible. These attempts have been examined elsewhere and found wanting. Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed. That particular interpretation has indeed a grossly non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

“Causality and locality” in this description are exactly the two points where Einstein objected in the quoted letter: causality, as understood here, implies determinism, and locality implies no spooky action at a distance. Given this result, Einstein might have hoped that the predictions of quantum mechanics would turn out to fail, so that he could still have his desired physics. This did not happen. On the contrary, these predictions (precisely those inconsistent with such theories) have been verified time and time again.

Rather than putting the reader through Bell’s math and physics, we will explain his result with an analogy by Mark Alford. Alford makes this comparison:

Imagine that someone has told us that twins have special powers, including the ability to communicate with each other using telepathic influences that are “superluminal” (faster than light). We decide to test this by collecting many pairs of twins, separating each pair, and asking each twin one question to see if their answers agree.

To make things simple we will only have three possible questions, and they will be Yes/No questions. We will tell the twins in advance what the questions are.

The procedure is as follows.

  1. A new pair of twins is brought in and told what the three possible questions are.
  2. The twins travel far apart in space to separate questioning locations.
  3. At each location there is a questioner who selects one of the three questions at random, and poses that question to the twin in front of her.
  4. Spacelike separation. When the question is chosen and asked at one location, there is not enough time for any influence traveling at the speed of light to get from there to the other location in time to affect either what question is chosen there, or the answer given.

He now supposes the twins give the same responses when they are asked the same question, and discusses this situation:

Now, suppose we perform this experiment and we find same-question agreement: whenever a pair of spacelike-separated twins both happen to get asked the same question, their answers always agree. How could they do this? There are two possible explanations,

1. Each pair of twins uses superluminal telepathic communication to make sure both twins give the same answer.

2. Each pair of twins follows a plan. Before they were separated they agreed in advance what their answers to the three questions would be.

The same-question agreement that we observe does not prove that twins can communicate telepathically faster than light. If we believe that strong locality is a valid principle, then we can resort to the other explanation, that each pair of twins is following a plan. The crucial point is that this requires determinism. If there were any indeterministic evolution while the twins were spacelike separated, strong locality requires that the random component of one twin’s evolution would have to be uncorrelated with the other twin’s evolution. Such uncorrelated indeterminism would cause their recollections of the plan to diverge, and they would not always show same-question agreement.

The results are understandable if the twins agree on the answers Yes-Yes-Yes, or Yes-No-Yes, or any other determinate combination. But they are not understandable if they decide to flip coins if they are asked the second question, for example. If they did this, they would have to disagree 50% of the time on that question, unless one of the coin flips affected the other.

Alford goes on to discuss what happens when the twins are asked different questions:

In the thought experiment as described up to this point we only looked at the recorded answers in cases where each twin in a given pair was asked the same question. There are also recorded data on what happens when the two questioners happen to choose different questions. Bell noticed that this data can be used as a cross-check on our strong-locality-saving idea that the twins are following a pre-agreed plan that determines that their answers will always agree. The cross-check takes the form of an inequality:

Bell inequality for twins:

If a pair of twins is following a plan then, when each twin is asked a different randomly chosen question, their answers will be the same, on average, at least 1/3 of the time.

He derives this value:

For each pair of twins, there are four general types of pre-agreed plan they could adopt when they are arranging how they will both give the same answer to each of the three possible questions.

(a) a plan in which all three answers are Yes;

(b) a plan in which there are two Yes and one No;

(c) a plan in which there are two No and one Yes;

(d) a plan in which all three answers are No.

If, as strong locality and same-question agreement imply, both twins in a given pair follow a shared predefined plan, then when the random questioning leads to each of them being asked a different question from the set of three possible questions, how often will their answers happen to be the same (both Yes or both No)? If the plan is of type (a) or (d), both answers will always be the same. If the plan is of type (b) or (c), both answers will be the same 1/3 of the time. We conclude that no matter what type of plan each pair of twins may follow, the mere fact that they are following a plan implies that, when each of them is asked a different randomly chosen question, they will both give the same answer (which might be Yes or No) at least 1/3 of the time. It is important to appreciate that one needs data from many pairs of twins to see this effect, and that the inequality holds even if each pair of twins freely chooses any plan they like.

The “Bell inequality” is violated if we do the experimental test and the twins end up agreeing, when they are asked different questions, less than 1/3 of the time, despite consistently agreeing when they are asked the same question. If one saw such results in reality, one might be forgiven for concluding that the twins do have superluminal telepathic abilities. Unfortunately for Einstein, this is what we do get, consistently, when we test the analogous quantum mechanical version of the experiment.