And Fire by Fire

Superstitious Nonsense asks about the last post:

So the answer here is that -some- of the form is present in the mind, but always an insufficient amount or accuracy that the knowledge will not be “physical”? You seem to be implying the part of the form that involves us in the self-reference paradox is precisely the part of the form that gives objects their separate, “physical” character. Is this fair? Certainly, knowing progressively more about an object does not imply the mental copy is becoming closer and closer to having a discrete physicality.

I’m not sure this is the best way to think about it. The self-reference paradox arises because we are trying to copy ourselves into ourselves, and thus we are adding something into ourselves, making the copy incomplete. The problem is not that there is some particular “part of the form” that we cannot copy, but that it is in principle impossible to copy it perfectly. This is different from saying that there is some specific “part” that cannot be copied.

Consider what happens when we make “non-physical” copies of something without involving a mind. Consider the image of a gold coin. There are certain relationships common to the image and to a gold coin in the physical world. So you could say we have a physical gold coin, and a non-physical one.

But wait. If the image of the coin is on paper, isn’t that a physical object? Or if the image is on your computer screen, isn’t your screen a physical object? And the image is just the colors on the screen, which are apparently just as “physical” (or non-physical) as the color of the actual coin. So why we would say that “this is not a physical coin?”

Again, as in the last post, the obvious answer is that the image is not made out of gold, while the physical coin is. But why not? Is it that the image is not accurate enough? If we made it more accurate, would it be made out of gold, or become closer to being made out of gold? Obviously not. This is like noting that a mental copy does not become closer and closer to being a physical one.

In a sense it is true that the reason the image of the coin is not physical is that it is not accurate enough. But that is because it cannot be accurate enough: the fact that it is an image positively excludes the copying of certain relationships. Some aspects can be copied, but others cannot be copied at all, as long as it is an image. On the other hand, you can look at this from the opposite direction: if you did copy those aspects, the image would no longer be an image, but a physical coin.

As a similar example, consider the copying of a colored scene into black and white. We can copy some aspects of the scene by using various shades of gray, but we cannot copy every aspect of the scene. There are simply not enough differences in a black and white image to reflect every aspect of a colored scene. The black and white image, as you make it more accurate, does not become closer to being colored, but this is simply because there are aspects of the colored scene that you never copy. If you do insist on copying those aspects, you will indeed make the black and white image into a colored image, and thus it will no longer be black and white.

The situation becomes significantly more complicated when we talk about a mind. In one way, there is an important similarity. When we say that the copy in the mind is “not physical,” that simply means that it is a copy in the mind, just as when we say that the image of the coin is not physical, it means that it is an image, made out of the stuff that images are made of. But just as the image is physical anyway, in another sense, so it is perfectly possible that the mind is physical in a similar sense. However, this is where things begin to become confusing.

Elsewhere, I discussed Aristotle’s argument that the mind is immaterial. Considering the cases above, we could put his argument in this way: the human brain is a limited physical object. So as long as the brain remains a brain, there are simply not enough potential differences in it to model all possible differences in the world, just as you cannot completely model a colored scene using black and white. But anything at all can be understood. Therefore we cannot be understanding by using the brain.

I have claimed myself that anything that can be, can be understood. But this needs to be understood generically, rather than as claiming that it is possible to understand reality in every detail simultaneously. The self-reference paradox shows that it is impossible in principle for a knower that copies forms into itself to understand itself in every aspect at once. But even apart from this, it is very obvious that we as human beings cannot understand every aspect of reality at once. This does not even need to be argued: you cannot even keep everything in mind at once, let alone understand every detail of everything. This directly suggests a problem with Aristotle’s argument: if being able to know all things suggests that the mind is immaterial, the obvious fact that we cannot know all things suggests that it is not.

Nonetheless, let us see what happens if we advance the argument on Aristotle’s behalf. Admittedly, we cannot understand everything at once. But in the case of the colored scene, there are aspects that cannot be copied at all into the black and white copy. And in the case of the physical coin, there are aspects that cannot be copied at all into the image. So if we are copying things into the brain, doesn’t that mean that there should be aspects of reality that cannot be copied at all into the mind? But this is false, since it would not only mean that we can’t understand everything, but it would also mean that there would be things that we cannot think about at all, and if it is so, then it is not so, because in that case we are right now talking about things that we supposedly cannot talk about.

Copying into the mind is certainly different from copying into a black and white scene or copying into a picture, and this does get at one of the differences. But the difference here is that the method of copying in the case of the mind is flexible, while the method of copying in the case of the pictures is rigid. In other words, we have a pre-defined method of copying in the case of the pictures that, from the beginning, only allows certain aspects to be copied. In the case of the mind, we determine the method differently from case to case, depending on our particular situation and the thing being copied. The result is that there is no particular aspect of things that cannot be copied, but you cannot copy every aspect at once.

In answer to the original question, then, the reason that the “mental copy” always remains mental is that you never violate the constraints of the mind, just as a black and white copy never violates the constraints of being black and white. But if you did violate the constraints of the black and white copy by copying every aspect of the scene, the image would become colored. And similarly, if you did violate the constraints of the mind in order to copy every aspect of reality, your mind would cease to be, and it would instead become the thing itself. But there is no particular aspect of “physicality” that you fail to copy: rather, you just ensure that one way or another you do not violate the constraints of the mind that you have.

Unfortunately, the explanation here for why the mind can copy any particular aspect of reality, although not every aspect at once, is rather vague. Perhaps a clearer explanation is possible? In fact, someone could use the vagueness to argue for Aristotle’s position and against mine. Perhaps my account is vague because it is wrong, and there is actually no way for a physical object to receive copied forms in this way.

Tautologies Not Trivial

In mathematics and logic, one sometimes speaks of a “trivial truth” or “trivial theorem”, referring to a tautology. Thus for example in this Quora question, Daniil Kozhemiachenko gives this example:

The fact that all groups of order 2 are isomorphic to one another and commutative entails that there are no non-Abelian groups of order 2.

This statement is a tautology because “Abelian group” here just means one that is commutative: the statement is like the customary example of asserting that “all bachelors are unmarried.”

Some extend this usage of “trivial” to refer to all statements that are true in virtue of the meaning of the terms, sometimes called “analytic.” The effect of this is to say that all statements that are logically necessary are trivial truths. An example of this usage can be seen in this paper by Carin Robinson. Robinson says at the end of the summary:

Firstly, I do not ask us to abandon any of the linguistic practises discussed; merely to adopt the correct attitude towards them. For instance, where we use the laws of logic, let us remember that there are no known/knowable facts about logic. These laws are therefore, to the best of our knowledge, conventions not dissimilar to the rules of a game. And, secondly, once we pass sentence on knowing, a priori, anything but trivial truths we shall have at our disposal the sharpest of philosophical tools. A tool which can only proffer a better brand of empiricism.

While the word “trivial” does have a corresponding Latin form that means ordinary or commonplace, the English word seems to be taken mainly from the “trivium” of grammar, rhetoric, and logic. This would seem to make some sense of calling logical necessities “trivial,” in the sense that they pertain to logic. Still, even here something is missing, since Robinson wants to include the truths of mathematics as trivial, and classically these did not pertain to the aforesaid trivium.

Nonetheless, overall Robinson’s intention, and presumably that of others who speak this way, is to suggest that such things are trivial in the English sense of “unimportant.” That is, they may be important tools, but they are not important for understanding. This is clear at least in our example: Robinson calls them trivial because “there are no known/knowable facts about logic.” Logical necessities tell us nothing about reality, and therefore they provide us with no knowledge. They are true by the meaning of the words, and therefore they cannot be true by reason of facts about reality.

Things that are logically necessary are not trivial in this sense. They are important, both in a practical way and directly for understanding the world.

Consider the failure of the Mars Climate Orbiter:

On November 10, 1999, the Mars Climate Orbiter Mishap Investigation Board released a Phase I report, detailing the suspected issues encountered with the loss of the spacecraft. Previously, on September 8, 1999, Trajectory Correction Maneuver-4 was computed and then executed on September 15, 1999. It was intended to place the spacecraft at an optimal position for an orbital insertion maneuver that would bring the spacecraft around Mars at an altitude of 226 km (140 mi) on September 23, 1999. However, during the week between TCM-4 and the orbital insertion maneuver, the navigation team indicated the altitude may be much lower than intended at 150 to 170 km (93 to 106 mi). Twenty-four hours prior to orbital insertion, calculations placed the orbiter at an altitude of 110 kilometers; 80 kilometers is the minimum altitude that Mars Climate Orbiter was thought to be capable of surviving during this maneuver. Post-failure calculations showed that the spacecraft was on a trajectory that would have taken the orbiter within 57 kilometers of the surface, where the spacecraft likely skipped violently on the uppermost atmosphere and was either destroyed in the atmosphere or re-entered heliocentric space.[1]

The primary cause of this discrepancy was that one piece of ground software supplied by Lockheed Martin produced results in a United States customary unit, contrary to its Software Interface Specification (SIS), while a second system, supplied by NASA, expected those results to be in SI units, in accordance with the SIS. Specifically, software that calculated the total impulse produced by thruster firings produced results in pound-force seconds. The trajectory calculation software then used these results – expected to be in newton seconds – to update the predicted position of the spacecraft.

It is presumably an analytic truth that the units defined in one way are unequal to the units defined in the other. But it was ignoring this analytic truth that was the primary cause of the space probe’s failure. So it is evident that analytic truths can be extremely important for practical purposes.

Such truths can also be important for understanding reality. In fact, they are typically more important for understanding than other truths. The argument against this is that if something is necessary in virtue of the meaning of the words, it cannot be telling us something about reality. But this argument is wrong for one simple reason: words and meaning themselves are both elements of reality, and so they do tell us something about reality, even when the truth is fully determinate given the meaning.

If one accepts the mistaken argument, in fact, sometimes one is led even further. Logically necessary truths cannot tell us anything important for understanding reality, since they are simply facts about the meaning of words. On the other hand, anything which is not logically necessary is in some sense accidental: it might have been otherwise. But accidental things that might have been otherwise cannot help us to understand reality in any deep way: it tells us nothing deep about reality to note that there is a tree outside my window at this moment, when this merely happens to be the case, and could easily have been otherwise. Therefore, since neither logically necessary things, nor logically contingent things, can help us to understand reality in any deep or important way, such understanding must be impossible.

It is fairly rare to make such an argument explicitly, but it is a common implication of many arguments that are actually made or suggested, or it at least influences the way people feel about arguments and understanding.  For example, consider this comment on an earlier post. Timocrates suggests that (1) if you have a first cause, it would have to be a brute fact, since it doesn’t have any other cause, and (2) describing reality can’t tell us any reasons but is “simply another description of how things are.” The suggestion behind these objections is that the very idea of understanding is incoherent. As I said there in response, it is true that every true statement is in some sense “just a description of how things are,” but that was what a true statement was meant to be in any case. It surely was not meant to be a description of how things are not.

That “analytic” or “tautologous” statements can indeed provide a non-trivial understanding of reality can also easily be seen by example. Some examples from this blog:

Good and being. The convertibility of being and goodness is “analytic,” in the sense that carefully thinking about the meaning of desire and the good reveals that a universe where existence as such was bad, or even failed to be good, is logically impossible. In particular, it would require a universe where there is no tendency to exist, and this is impossible given that it is posited that something exists.

Natural selection. One of the most important elements of Darwin’s theory of evolution is the following logically necessary statement: the things that have survived are more likely to be the things that were more likely to survive, and less likely to be the things that were less likely to survive.

Limits of discursive knowledge. Knowledge that uses distinct thoughts and concepts is necessarily limited by issues relating to self-reference. It is clear that this is both logically necessary, and tells us important things about our understanding and its limits.

Knowledge and being. Kant rightly recognized a sense in which it is logically impossible to “know things as they are in themselves,” as explained in this post. But as I said elsewhere, the logically impossible assertion that knowledge demands an identity between the mode of knowing and the mode of being is the basis for virtually every sort of philosophical error. So a grasp on the opposite “tautology” is extremely useful for understanding.

 

Form and Reality II

This is a followup to this earlier post, but will use a number of other threads to get a fuller understanding of the matter. Rather than presenting this in the form of a single essay, I will present it as a number of distinct theses, many of which have already been argued or suggested in various forms elsewhere on the blog.

(1) Everything that exists or can exist has or could have some relationship with the mind: relationship is in fact intrinsic to the nature of existence.

This was argued here, with related remarks in several recent posts. In a sense the claim is not only true but obviously so. You are the one who says or can say “this exists,” and you could not say or understand it unless the thing had or could have some relationship with your mind.

Perhaps this seems a bit unfair to reality, as though the limits of reality were being set by the limits of the thinker. What if there were a limited being that could only think of some things, but other things could exist that it could not think about? It is easy to see that in this situation the limited being does not have the concept of “everything,” and so can neither affirm nor deny (1). It is not that it would affirm it but be mistaken. It would simply never think of it.

Someone could insist: I myself am limited. It might be that there are better thinkers in the world that can think about things I could never conceive of. But again, if you have concept of “everything,” then you just thought of those things: they are the things that those thinkers would think about. So you just thought about them too, and brought them into relationship with yourself.

Thus, anyone who actually has the idea of “everything,” and thinks about the matter clearly, will agree with (1).

(2) Nothing can be true which could not in principle (in some sense of “in principle”) in some way be said to be true.

Thesis (1) can be taken as saying that anything that can be, can also be understood, at least in some way; and thesis (2) can be taken as saying that anything that can be understood, can also be said, at least in some way.

Since language is conventional, this does not need much of an argument. If I think that something exists, and I don’t have a name for it, I can make up a name. If I think that one thing is another thing, but don’t have words for these things, I can make up words for them. Even if I am not quite sure what I am thinking, I can say, “I have a thought in my mind but don’t quite have the words for it,” and in some way I have already put it into words.

One particular objection to the thesis might be made from self-reference paradoxes. The player in the Liar Game cannot correctly say whether the third statement is true or false, even though it is in fact true or false. But note two things: first, he cannot do this while he is playing, but once the game is over, he can explicitly and correctly say whether it was true or false. Second, even while playing, he can say, “the third statement has a truth value,” and in this way he speaks of its truth in a generic way. This is in part why I added the hedges to (2), “at least in some way”, and “in principle.”

(3) Things do not have hidden essences. That is, they may have essences, but those essences can be explained in words.

This follows in a straightforward way from (1) and (2). The essence of a thing is just “what it is,” or perhaps, “what it most truly is.” The question “what is this thing?” is formed with words, and it is evident that anyone who answers the question, will answer the question by using words.

Now someone might object that the essence of a thing might be hidden because perhaps in some cases the question does not have an answer. But then it would not be true that it has an essence but is hidden: rather, it would be false that it has an essence. Similarly, if the question “where is this thing,” does not have any answer, it does not mean the thing is in a hidden place, but that the thing is not in a place at all.

Another objection might be that an essence might be hidden because the answer to the question exists, but cannot be known. A discussion of this would depend on what is meant by “can be known” and “cannot be known” in this context. That is, if the objector is merely saying that we do not know such things infallibly, including the answer to the question, “what is this?”, then I agree, but would add that (3) does not speak to this point one way or another. But if it is meant that “cannot be known” means that there is something there, the “thing in itself,” which in no way can be known or expressed in words, this would be the Kantian error. This is indeed contrary to (3), and implicitly to (1) or (2) or both, but it is also false.

People might also think that the essence cannot be known because they notice that the question “what is this?” can have many legitimate answers, and suppose that one of these, and only one, must be really and truly true, but think that we have no way to find out which one it is. While there are certainly cases where an apparent answer to the question is not a true answer, the main response here is that if both answers are true, both answers are true: there does not need to be a deeper but hidden level where one is true and the other false. There may however be a deeper level which speaks to other matters and possibly explains both answers. Thus I said in the post linked above that the discussion was not limited to “how many,” but would apply in some way to every question about the being of things.

(4) Reductionism, as it is commonly understood, is false.

I have argued this in various places, but more recently and in particular here and here. It is not just one-sided to say for example that the universe and everything in it is just a multitude of particles. It is false, because it takes one of several truths, and says that one is “really” true and that the other is “really” false.

(5) Anti-reductionism, as it is commonly understood, is false.

This follows from the same arguments. Anti-reductionism, as for example the sort advocated by Alexander Pruss, takes the opposite side of the above argument, saying that certain things are “really” one and in no way many. And this is also false.

(6) Form makes a thing to be what it is, and makes it to be one thing.

This is largely a question of definition. It is what is meant by form in this context.

Someone might object that perhaps there is nothing that makes a thing what it is, or there is nothing that makes it one thing. But if it is what it is of itself, or if it is one of itself, then by this definition it is its own form, and we do not necessarily have an issue with that.

Again, someone might say that the definition conflates two potentially distinct things. Perhaps one thing makes a thing what it is, and another thing makes it one thing. But this is not possible because of the convertibility of being and unity: to be a thing at all, is to be one thing.

(7) Form is what is in common between the mind and the thing it understands, and is the reason the mind understands at all.

This is very distinctly not a question of definition. This needs to be proved from (6), along with what we know about understanding.

It is not so strange to think that you would need to have something in common with a thing in order to understand it. Thus Aristotle presents the words of Empedocles:

For ’tis by Earth we see Earth, by Water Water,

By Ether Ether divine, by Fire destructive Fire,

By Love Love, and Hate by cruel Hate.

On the other hand, there is also obviously something wrong with this. I don’t need to be a tree in order to see or think about a tree, and it is not terribly obvious that there is even anything in common between us. In fact, one of Hilary Lawson’s arguments for his anti-realist position is that there frequently seems to be nothing in common between causes and effects, and that therefore there may be (or certainly will be) nothing in common between our minds and reality, and thus we cannot ultimately know anything. Thus he says in Chapter 2 of his book on closure:

For a system of closure to provide a means of intervention in openness and thus to function as a closure machine, it requires a means of converting the flux of openness into an array of particularities. This initial layer of closure will be identified as ‘preliminary closure’. As with closure generally, preliminary closure consists in the realisation of particularity as a consequence of holding that which is different as the same. This is achieved through the realisation of material in response to openness. The most minimal example of a system of closure consists of a single preliminary closure. Such a system requires two discrete states, or at least states that can be held as if they were discrete. It is not difficult to provide mechanical examples of such systems which allow for a single preliminary closure. A mousetrap for example, can be regarded as having two discrete states: it is either set, it is ready, or it has sprung, it has gone off. Many different causes may have led to it being in one state or another: it may have been sprung by a mouse, but it could also have been knocked by someone or something, or someone could have deliberately set it off. In the context of the mechanism all of these variations are of no consequence, it is either set or it has sprung. The diversity of the immediate environment is thereby reduced to single state and its absence: it is either set or it is not set. Any mechanical arrangement that enables a system to alternate between two or more discrete states is thereby capable of providing the basis for preliminary closure. For example, a bell or a gate could function as the basis for preliminary closure. The bell can either ring or not ring, the gate can be closed or not closed. The bell may ring as the result of the wind, or a person or animal shaking it, but the cause of the response is in the context of system of no consequence. The bell either rings or it doesn’t. Similarly, the gate may be in one state or another because it has been deliberately moved, or because something or someone has dislodged it accidentally, but these variations are not relevant in the context of the state of system, which in this case is the position of the gate. In either case the cause of the bell ringing or the gate closing is infinitely varied, but in the context of the system the variety of inputs is not accessible to the system and thus of no consequence.

A useful way to think about Lawson is that he is in some way a disciple of Heraclitus. Thus closure is “holding that which is different as the same,” but in reality nothing is ever the same because everything is in flux. In the context of this passage, the mousetrap is either set or sprung, and so it divides the world into two states, the “set” state and the “sprung” state. But the universes with the set mousetrap have nothing in common with one another besides the set mousetrap, and the universes with the sprung mousetrap have nothing in common with one another besides the sprung mousetrap.

We can see how this could lead to the conclusion that knowledge is impossible. Sight divides parts of the world up with various colors. Leaves are green, the sky is blue, the keyboard I am using is black. But if I look at two different green things, or two different blue things, they may have nothing in common besides the fact that they affected my sight in a similar way. The sky and a blue couch are blue for very different reasons. We discussed this particular point elsewhere, but the general concern would be that we have no reason to think there is anything in common between our mind and the world, and some reason to think there must be something in common in order for us to understand anything.

Fortunately, the solution can be found right in the examples which supposedly suggest that there is nothing in common between the mind and the world. Consider the mousetrap. Do the universes with the set mousetrap have something in common? Yes, they have the set mousetrap in common. But Lawson does not deny this. His concern is that they have nothing else in common. But they do have something else in common: they have the same relationship to the mousetrap, different from the relationship that the universes with the sprung mousetrap have to their mousetrap. What about the mousetrap itself? Do those universes have something in common with the mousetrap? If we consider the relationship between the mousetrap and the universe as a kind of single thing with two ends, then they do, although they share in it from different ends, just as a father and son have a relationship in common (in this particular sense.) The same things will be true in the case of sensible qualities. “Blue” may divide up surface reflectance properties in a somewhat arbitrary way, but it does divide them into things that have something in common, namely their relationship with the sense of sight.

Or consider the same thing with a picture. Does the picture have anything in common with the thing it represents? Since a picture is meant to actually look similar to the eye to the object pictured, it may have certain shapes in common, the straightness of certain lines, and so on. It may have some colors in common. This kind of literal commonness might have suggested to Empedocles that we should know “earth by earth,” but one difference is that a picture and the object look alike to the eye, but an idea is not something that the mind looks at, and which happens to look like a thing: rather the idea is what the mind uses in order to look at a thing at all.

Thus a better comparison would be between the the thing seen and the image in the eye or the activity of the visual cortex. It is easy enough to see by looking that the image in a person’s eye bears some resemblance to the thing seen, even the sort of resemblance that a picture has. In a vaguer way, something similar turns out to be true even in the visual cortex:

V1 has a very well-defined map of the spatial information in vision. For example, in humans, the upper bank of the calcarine sulcus responds strongly to the lower half of visual field (below the center), and the lower bank of the calcarine to the upper half of visual field. In concept, this retinotopic mapping is a transformation of the visual image from retina to V1. The correspondence between a given location in V1 and in the subjective visual field is very precise: even the blind spots are mapped into V1. In terms of evolution, this correspondence is very basic and found in most animals that possess a V1. In humans and animals with a fovea in the retina, a large portion of V1 is mapped to the small, central portion of visual field, a phenomenon known as cortical magnification. Perhaps for the purpose of accurate spatial encoding, neurons in V1 have the smallest receptive field size of any visual cortex microscopic regions.

However, as I said, this is in a much vaguer way. In particular, it is not so much an image which is in common, but certain spatial relationships. If we go back to the idea of the mousetrap, this is entirely unsurprising. Causes and effects will always have something in common, and always in this particular way, namely with a commonality of relationship, because causes and effects, as such, are defined by their relationship to each other.

How does all this bear on our thesis (7)? Consider the color blue, and the question, “what is it to be blue?” What is the essence of blue? We could answer this in at least two different ways:

  1. To be blue is to have certain reflectance properties.
  2. To be blue is to be the sort of thing that looks blue.

But in the way intended, these are one and the same thing. A thing looks blue if it has those properties, and it has those properties if it looks blue. Now someone might say that this is a direct refutation of our thesis, since the visual cortex presumably does not look blue or have those properties when you look at something blue. But this is like Lawson’s claim that the universe has nothing in common with the sprung mousetrap. It does have something in common, if you look at the relationship from the other end. The same thing happens when we consider the meaning of “certain reflectance properties,” and “the sort of thing that looks blue.” We are actually talking about the properties that make a thing look blue, so both definitions are relative to the sense of sight. And this means that sight has something relative in common with them, and the relation it has in common is the very one that defines the nature of blue. As this is what we mean by form (thesis 6), the form of blue must be present in the sense of sight in order to see something blue.

In fact, it followed directly from thesis (1) that the nature of blue would need to include something relative. And it followed from (2) and (3) that the very same nature would turn out to be present in our senses, thoughts, and words.

The same argument applies to the mind as to the senses. I will draw additional conclusions in a later post, and in particular, show the relevance of theses (4) and (5) to the rest.

Self Reference Paradox Summarized

Hilary Lawson is right to connect the issue of the completeness and consistency of truth with paradoxes of self-reference.

As a kind of summary, consider this story:

It was a dark and stormy night,
and all the Cub Scouts where huddled around their campfire.
One scout looked up to the Scout Master and said:
“Tell us a story.”
And the story went like this:

It was a dark and stormy night,
and all the Cub Scouts where huddled around their campfire.
One scout looked up to the Scout Master and said:
“Tell us a story.”
And the story went like this:

It was a dark and stormy night,
and all the Cub Scouts where huddled around their campfire.
One scout looked up to the Scout Master and said:
“Tell us a story.”
And the story went like this:

It was a dark and stormy night,
and all the Cub Scouts where huddled around their campfire.
One scout looked up to the Scout Master and said:
“Tell us a story.”
And the story went like this:
etc.

In this form, the story obviously exists, but in its implied form, the story cannot be told, because for the story to be “told” is for it to be completed, and it is impossible for it be completed, since it will not be complete until it contains itself, and this cannot happen.

Consider a similar example. You sit in a room at a desk, and decide to draw a picture of the room. You draw the walls. Then you draw yourself and your desk. But then you realize, “there is also a picture in the room. I need to draw the picture.” You draw the picture itself as a tiny image within the image of your desktop, and add tiny details: the walls of the room, your desk and yourself.

Of course, you then realize that your artwork can never be complete, in exactly the same way that the story above cannot be complete.

There is essentially the same problem in these situations as in all the situations we have described which involve self-reference: the paradox of the liar, the liar game, the impossibility of detailed future prediction, the list of all true statementsGödel’s theorem, and so on.

In two of the above posts, namely on future prediction and Gödel’s theorem, there are discussions of James Chastek’s attempts to use the issue of self-reference to prove that the human mind is not a “mechanism.” I noted in those places that such supposed proofs fail, and at this point it is easy to see that they will fail in general, if they depend on such reasoning. What is possible or impossible here has nothing to do with such things, and everything to do with self-reference. You cannot have a mirror and a camera so perfect that you can get an actually infinite series of images by taking a picture of the mirror with the camera, but there is nothing about such a situation that could not be captured by an image outside the situation, just as a man outside the room could draw everything in the room, including the picture and its details. This does not show that a man outside the room has a superior drawing ability compared with the man in the room. The ability of someone else to say whether the third statement in the liar game is true or false does not prove that the other person does not have a “merely human” mind (analogous to a mere mechanism), despite the fact that you yourself cannot say whether it is true or false.

There is a grain of truth in Chastek’s argument, however. It does follow that if someone says that reality as a whole is a formal system, and adds that we can know what that system is, their position would be absurd, since if we knew such a system we could indeed derive a specific arithmetical truth, namely one that we could state in detail, which would be unprovable from the system, namely from reality, but nonetheless proved to be true by us. And this is logically impossible, since we are a part of reality.

At this point one might be tempted to say, “At this point we have fully understood the situation. So all of these paradoxes and so on don’t prevent us from understanding reality perfectly, even if that was the original appearance.”

But this is similar to one of two things.

First, a man can stand outside the room and draw a picture of everything in it, including the picture, and say, “Behold. A picture of the room and everything in it.” Yes, as long as you are not in the room. But if the room is all of reality, you cannot get outside it, and so you cannot draw such a picture.

Second, the man in the room can draw the room, the desk and himself, and draw a smudge on the center of the picture of the desk, and say, “Behold. A smudged drawing of the room and everything in it, including the drawing.” But one only imagines a picture of the drawing underneath the smudge: there is actually no such drawing in the picture of the room, nor can there be.

In the same way, we can fully understand some local situation, from outside that situation, or we can have a smudged understanding of the whole situation, but there cannot be any detailed understanding of the whole situation underneath the smudge.

I noted that I disagreed with Lawson’s attempt to resolve the question of truth. I did not go into detail, and I will not, as the book is very long and an adequate discussion would be much longer than I am willing to attempt, at least at this time, but I will give some general remarks. He sees, correctly, that there are problems both with saying that “truth exists” and that “truth does not exist,” taken according to the usual concept of truth, but in the end his position amounts to saying that the denial of truth is truer than the affirmation of truth. This seems absurd, and it is, but not quite so much as appears, because he does recognize the incoherence and makes an attempt to get around it. The way of thinking is something like this: we need to avoid the concept of truth. But this means we also need to avoid the concept of asserting something, because if you assert something, you are saying that it is true. So he needs to say, “assertion does not exist,” but without asserting it. Consequently he comes up with the concept of “closure,” which is meant to replace the concept of asserting, and “asserts” things in the new sense. This sense is not intended to assert anything at all in the usual sense. In fact, he concludes that language does not refer to the world at all.

Apart from the evident absurdity, exacerbated by my own realist description of his position, we can see from the general account of self-reference why this is the wrong answer. The man in the room might start out wanting to draw a picture of the room and everything in it, and then come to realize that this project is impossible, at least for someone in his situation. But suppose he concludes: “After all, there is no such thing as a picture. I thought pictures were possible, but they are not. There are just marks on paper.” The conclusion is obviously wrong. The fact that pictures are things themselves does prevent pictures from being exhaustive pictures of themselves, but it does not prevent them from being pictures in general. And in the same way, the fact that we are part of reality prevents us from having an exhaustive understanding of reality, but it does not prevent us from understanding in general.

There is one last temptation in addition to the two ways discussed above of saying that there can be an exhaustive drawing of the room and the picture. The room itself and everything in it, is itself an exhaustive representation of itself and everything in it, someone might say. Apart from being an abuse of the word “representation,” I think this is delusional, but this a story for another time.