Place, Time, and Universals

Consider the following three statements:

1. The chair and keyboard that I am currently using are both here in this room.

2. The chair and keyboard that I am currently using both exist in January 2019.

3. The chair and keyboard that I am currently using both came in the color black.

All three claims, considered as everyday statements, happen to be true. They also have a common subject, and something common about the predicate, namely the “in.” We have “in this room,” “in January,” and “in the color black.” Now someone might object that this is a mere artifact of my awkward phrasing: obviously, I deliberately chose these formulations with this idea in mind. So this seems to be a mere verbal similarity, and a meaningless one at that.

The objection seems pretty reasonable, but I will argue that it is mistaken. The verbal similarity is not accidental, despite the fact that I did indeed choose the formulations deliberately with this idea in mind. As I intend to argue, there is indeed something common to the three cases, namely that they represent various ways of existing together.

The three statements are true in their ordinary everyday sense. But consider the following three questions:

1. Are the chair and keyboard really in the same room, or is this commonality a mere appearance?

2. Do the chair and keyboard really exist in the same month, or is this commonality a mere appearance?

3. Did the chair and keyboard really come in the same color, or is this commonality a mere appearance?

These questions are like other questions which ask whether something is “really” the case. There is no such thing as being “really” on the right apart from the ordinary understanding of being on the right, and there is no such thing as being really in the same room apart from the ordinary everyday understanding of being in the same room. The same thing applies to the third question about color.

The dispute between realism and nominalism about universals starts in the following way, roughly speaking:

Nominalist: We say that two things are black. But obviously, there are two things here, and no third thing, and the two are not the same thing. So the two do not really have anything in common. Therefore “two things are black” is nothing but a way of speaking.

Platonic Realist: Obviously, the two things really are black. But what is really the case is not just a way of speaking. So the two really do have something in common. Therefore there are three things here: the two ordinary things, and the color black.

Since the Platonic Realist here goes more against common speech in asserting the existence of “three things” where normally one would say there are “two things,” the nominalist has the apparent advantage at this point, and this leads to more qualified forms of realism. In reality, however, one should have stopped the whole argument at this point. The two positions above form a Kantian dichotomy, and as in all such cases, both positions affirm something true, and both positions affirm something false. In this particular case, the nominalist acts as the Kantian, noting that universality is a mode of knowing, and therefore concludes that it is a mere appearance. The Platonic Realist acts as the anti-Kantian, noting that we can know that several things are in fact black, and concluding that universality is a mode of being as such.

But while universality is a way of knowing, existing together is a way of being, and is responsible for the way of knowing. In a similar way, seeing both my chair and keyboard at the same time is a way of seeing things, but this way of seeing is possible because they are here together in the room. Likewise, I can know that both are black, but this knowledge is only possible because they exist together “in” the color black. What does this mean, exactly? Since we are discussing sensible qualities, things are both in the room and black by having certain relationships with my senses. They exist together in those relationships with my senses.

There is no big difference when I ask about ideas. If we ask what two dogs have in common in virtue of both being dogs, what they have in common is a similar relationship to my understanding. They exist together in that relationship with my understanding.

It might be objected that this is circular. Even if what is in common is a relationship, there is still something in common, and that seems to remain unexplained. Two red objects have a certain relationship of “appearing red” to my eyes, but then do we have two things, or three? The two red things, or the two red things and the relationship of “appearing red”? Or is it four things: two red things, and their two relationships of appearing red? So which is it?

Again, there is no difference between these questions and asking whether a table is really on the left or really on the right. It is both, relative to different things, and likewise all three of these methods of counting are valid, depending on what you want to count. As I have said elsewhere, there are no hidden essences, no “true” count, no “how many things are really there?

“Existing together,” however, is a reality, and is not merely a mode of knowing. This provides another way to analyze the problem with the nominalist / Platonic realist opposition. Both arguments falsely assume that existing together is either logically derivative or non-existent. As I said in the post on existential relativity,¬† it is impossible to deduce the conclusion that many things exist from a list of premises each affirming that a single thing exists, if only because “many things” does not occur as a term in that list. The nominalist position cannot explain the evident fact that both things are black. Likewise, even if there are three things, the two objects and “black,” this would not explain why the two objects are black. The two objects are not the third, since there are three. So there must be yet another object, perhaps called “participation”, which connects the two objects and blackness. And since they both have participation, there must be yet another object, participation in general, in which both objects are also participating. Obviously none of this is helping: the problem was the assumption from the start that togetherness (whether in place, time, or color) could be something logically derivative.

(Postscript: the reader might notice that in the linked post on “in,” I said that a thing is considered to be in something as form in matter. This seems odd in the context of this post, since we are talking about being “in a color,” and a color would not normally be thought of as material, but as formal. But this simply corresponds with the fact that it would be more usual to say that the color black is in the chair, rather than the chair in the black. This is because it is actually more correct: the color black is formal with respect to the chair, not material. But when we ask, “what things can come in the color black,” we do think of black as though it were a kind of formless matter that could take various determinate forms.)

Spooky Action at a Distance

Albert Einstein objected to the usual interpretations of quantum mechanics because they seemed to him to imply “spooky action at a distance,” a phrase taken from a letter from Einstein to Max Born in 1947 (page 155 in this book):

I cannot make a case for my attitude in physics which you would consider at all reasonable. I admit, of course, that there is a considerable amount of validity in the statistical approach which you were the first to recognize clearly as necessary given the framework of the existing formalism. I cannot seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality in time and space, free from spooky actions at a distance. I am, however, not yet firmly convinced that it can really be achieved with a continuous field theory, although I have discovered a possible way of doing this which so far seems quite reasonable. The calculation difficulties are so great that I will be biting the dust long before I myself can be fully convinced of it. But I am quite convinced that someone will eventually come up with a theory whose objects, connected by laws, are not probabilities but considered facts, as used to be taken for granted until quite recently. I cannot, however, base this conviction on logical reasons, but can only produce my little finger as witness, that is, I offer no authority which would be able to command any kind of respect outside of my own hand.

Einstein has two objections: the theory seems to be indeterministic, and it also seems to imply action at a distance. He finds both of these implausible. He thinks physics should be deterministic, “as used to be taken for granted until quite recently,” and that all interactions should be local: things directly affect only things which are close by, and affect distant things only indirectly.

In many ways, things do not appear to have gone well for Einstein’s intuitions. John Bell constructed a mathematical argument, now known as Bell’s Theorem, that the predictions of quantum mechanics cannot be reproduced by the kind of theory desired by Einstein. Bell summarizes his point:

The paradox of Einstein, Podolsky and Rosen was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality. In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty. There have been attempts to show that even without such a separability or locality requirement no “hidden variable” interpretation of quantum mechanics is possible. These attempts have been examined elsewhere and found wanting. Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed. That particular interpretation has indeed a grossly non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

“Causality and locality” in this description are exactly the two points where Einstein objected in the quoted letter: causality, as understood here, implies determinism, and locality implies no spooky action at a distance. Given this result, Einstein might have hoped that the predictions of quantum mechanics would turn out to fail, so that he could still have his desired physics. This did not happen. On the contrary, these predictions (precisely those inconsistent with such theories) have been verified time and time again.

Rather than putting the reader through Bell’s math and physics, we will explain his result with an analogy by Mark Alford. Alford makes this comparison:

Imagine that someone has told us that twins have special powers, including the ability to communicate with each other using telepathic influences that are “superluminal” (faster than light). We decide to test this by collecting many pairs of twins, separating each pair, and asking each twin one question to see if their answers agree.

To make things simple we will only have three possible questions, and they will be Yes/No questions. We will tell the twins in advance what the questions are.

The procedure is as follows.

  1. A new pair of twins is brought in and told what the three possible questions are.
  2. The twins travel far apart in space to separate questioning locations.
  3. At each location there is a questioner who selects one of the three questions at random, and poses that question to the twin in front of her.
  4. Spacelike separation. When the question is chosen and asked at one location, there is not enough time for any influence traveling at the speed of light to get from there to the other location in time to affect either what question is chosen there, or the answer given.

He now supposes the twins give the same responses when they are asked the same question, and discusses this situation:

Now, suppose we perform this experiment and we find same-question agreement: whenever a pair of spacelike-separated twins both happen to get asked the same question, their answers always agree. How could they do this? There are two possible explanations,

1. Each pair of twins uses superluminal telepathic communication to make sure both twins give the same answer.

2. Each pair of twins follows a plan. Before they were separated they agreed in advance what their answers to the three questions would be.

The same-question agreement that we observe does not prove that twins can communicate telepathically faster than light. If we believe that strong locality is a valid principle, then we can resort to the other explanation, that each pair of twins is following a plan. The crucial point is that this requires determinism. If there were any indeterministic evolution while the twins were spacelike separated, strong locality requires that the random component of one twin’s evolution would have to be uncorrelated with the other twin’s evolution. Such uncorrelated indeterminism would cause their recollections of the plan to diverge, and they would not always show same-question agreement.

The results are understandable if the twins agree on the answers Yes-Yes-Yes, or Yes-No-Yes, or any other determinate combination. But they are not understandable if they decide to flip coins if they are asked the second question, for example. If they did this, they would have to disagree 50% of the time on that question, unless one of the coin flips affected the other.

Alford goes on to discuss what happens when the twins are asked different questions:

In the thought experiment as described up to this point we only looked at the recorded answers in cases where each twin in a given pair was asked the same question. There are also recorded data on what happens when the two questioners happen to choose different questions. Bell noticed that this data can be used as a cross-check on our strong-locality-saving idea that the twins are following a pre-agreed plan that determines that their answers will always agree. The cross-check takes the form of an inequality:

Bell inequality for twins:

If a pair of twins is following a plan then, when each twin is asked a different randomly chosen question, their answers will be the same, on average, at least 1/3 of the time.

He derives this value:

For each pair of twins, there are four general types of pre-agreed plan they could adopt when they are arranging how they will both give the same answer to each of the three possible questions.

(a) a plan in which all three answers are Yes;

(b) a plan in which there are two Yes and one No;

(c) a plan in which there are two No and one Yes;

(d) a plan in which all three answers are No.

If, as strong locality and same-question agreement imply, both twins in a given pair follow a shared predefined plan, then when the random questioning leads to each of them being asked a different question from the set of three possible questions, how often will their answers happen to be the same (both Yes or both No)? If the plan is of type (a) or (d), both answers will always be the same. If the plan is of type (b) or (c), both answers will be the same 1/3 of the time. We conclude that no matter what type of plan each pair of twins may follow, the mere fact that they are following a plan implies that, when each of them is asked a different randomly chosen question, they will both give the same answer (which might be Yes or No) at least 1/3 of the time. It is important to appreciate that one needs data from many pairs of twins to see this effect, and that the inequality holds even if each pair of twins freely chooses any plan they like.

The “Bell inequality” is violated if we do the experimental test and the twins end up agreeing, when they are asked different questions, less than 1/3 of the time, despite consistently agreeing when they are asked the same question. If one saw such results in reality, one might be forgiven for concluding that the twins do have superluminal telepathic abilities. Unfortunately for Einstein, this is what we do get, consistently, when we test the analogous quantum mechanical version of the experiment.

Form is Not Matter

I have touched on this at other times, as here, here, and here. In the present post I am simply emphasizing the point more directly potentially for future reference.

If you receive an IKEA table in the mail, you have the parts that go to make up a table, but they are not yet put together in the form of a table. But very obviously, the form is not an additional part that you need to make the table. One does not say, “We need six parts for the table: the four legs, the tabletop, and the form of the table.” The form is something additional, but it is not an additional part. It is the “being put together as a table” that the parts require in order to be a table.

To say that the parts exist “in the form of a table” is also an informative expression here. One speaks as though “the form of a table” were a place, somewhat like Newton’s absolute space, in which the parts of the table exist together. This idea is helpful because just as Newton’s absolute space does not actually exist, so there will be analogous errors about form, as for example the idea that form is an additional part. Likewise, understanding the actual truth about place will help us to understand the truth about form.

Really and Truly True

There are two persons in a room with a table between them. One says, “There is a table on the right.” The other says, “There is a table on the left.”

Which person is right? The obvious answer is that both are right. But suppose they attempt to make this into a metaphysical disagreement.

“Yes, in a relative sense, the table is on the right of one of us and on the left of the other. But really and truly, at a fundamental level, the table is on the right, and not on the left.”

“I agree that there must be a fundamental truth to where the table is. But I think it is really and truly on the left, and not on the right.”

Now both are wrong, because it is impossible for the relationships of “on the right” and “on the left” to exist without correlatives, and the assertion that the table is “really and truly” on the right or on the left means nothing here except that these things do not depend on a relationship to an observer.

Thus both people are right, if they intend their assertions in a common sense way, and both are wrong, if they intend their assertions in the supposed metaphysical way. Could it happen that one is right and the other wrong? Yes, if one intends to speak in the common sense way, and the other in the metaphysical way, but not if they are speaking in the same way.

In the Mathematical Principles of Natural Philosophy, Newton explains his ideas of space and time:

I. Absolute, true, and mathematical time, of itself, and from its own nature flows equably without regard to anything external, and by another name is called duration: relative, apparent, and common time, is some sensible and external (whether accurate or unequable) measure of duration by the means of motion, which is commonly used instead of true time; such as an hour, a day, a month, a year.

II. Absolute space, in its own nature, without regard to anything external, remains always similar and immovable. Relative space is some movable dimension or measure of the absolute spaces; which our senses determine by its position to bodies; and which is vulgarly taken for immovable space; such is the dimension of a subterraneous, an æreal, or celestial space, determined by its position in respect of the earth. Absolute and relative space, are the same in figure and magnitude; but they do not remain always numerically the same. For if the earth, for instance, moves, a space of our air, which relatively and in respect of the earth remains always the same, will at one time be one part of the absolute space into which the air passes; at another time it will be another part of the same, and so, absolutely understood, it will be perpetually mutable.

III. Place is a part of space which a body takes up, and is according to the space, either absolute or relative. I say, a part of space; not the situation, nor the external surface of the body. For the places of equal solids are always equal; but their superfices, by reason of their dissimilar figures, are often unequal. Positions properly have no quantity, nor are they so much the places themselves, as the properties of places. The motion of the whole is the same thing with the sum of the motions of the parts; that is, the translation of the whole, out of its place, is the same thing with the sum of the translations of the parts out of their places; and therefore the place of the whole is the same thing with the sum of the places of the parts, and for that reason, it is internal, and in the whole body.

IV. Absolute motion is the translation of a body from one absolute place into another; and relative motion, the translation from one relative place into another. Thus in a ship under sail, the relative place of a body is that part of the ship which the body possesses; or that part of its cavity which the body fills, and which therefore moves together with the ship: and relative rest is the continuance of the body in the same part of the ship, or of its cavity. But real, absolute rest, is the continuance of the body in the same part of that immovable space, in which the ship itself, its cavity, and all that it contains, is moved. Wherefore, if the earth is really at rest, the body, which relatively rests in the ship, will really and absolutely move with the same velocity which the ship has on the earth. But if the earth also moves, the true and absolute motion of the body will arise, partly from the true motion of the earth, in immovable space; partly from the relative motion of the ship on the earth; and if the body moves also relatively in the ship; its true motion will arise, partly from the true motion of the earth, in immovable space, and partly from the relative motions as well of the ship on the earth, as of the body in the ship; and from these relative motions will arise the relative motion of the body on the earth. As if that part of the earth, where the ship is, was truly moved toward the east, with a velocity of 10010 parts; while the ship itself, with a fresh gale, and full sails, is carried towards the west, with a velocity expressed by 10 of those parts; but a sailor walks in the ship towards the east, with 1 part of the said velocity; then the sailor will be moved truly in immovable space towards the east, with a velocity of 10001 parts, and relatively on the earth towards the west, with a velocity of 9 of those parts.

While the details of Einstein’s theory of relativity may have been contingent, it is not difficult to see that Newton’s theory here is mistaken, and that anyone could have known it at the time. It is mistaken in precisely the way the people described above are mistaken in saying that the table is “really and truly” on the left or on the right.

For example, suppose the world had a beginning in time. Does it make sense to ask whether it could have started at a later time, or at an earlier one? It does not, because “later” and “earlier” are just as relative as “on the left” and “on the right,” and there is nothing besides the world in relation to which the world could have these relations. Could all bodies have been shifted a bit in one direction or another? No. This has no meaning, just as it has no meaning to be on the right without being on the right of something or other.

In an amusing exchange some years ago between Vladimir Nesov and Eliezer Yudkowsky, Nesov says:

Existence is relative: there is a fact of the matter (or rather: procedure to find out) about which things exist where relative to me, for example in the same room, or in the same world, but this concept breaks down when you ask about “absolute” existence. Absolute existence is inconsistent, as everything goes. Relative existence of yourself is a trivial question with a trivial answer.

Yudkowsky responds:

Absolute existence is inconsistent

Wha?

Yudkowsky is taken aback by the seemingly nonchalant affirmation of an apparently abstruse metaphysical claim, which if not nonsensical would appear to be the absurd claim that existence is impossible.

But Nesov is quite right: to exist is to exist in relation to other things. Thus to exist “absolutely” would be like “being absolutely on the right,” which is impossible.

Suppose we confront our original disputants with the fact that right and left are relative terms, and there is no “really true truth” about the relative position of the table. It is both on the right and on the left, relative to the disputants, and apart from these relationships, it is neither.

“Ok,” one responds, “but there is still a deep truth about where the table is: it is here in this room.”

“Actually,” the other answers, “The real truth is that it is in the house.”

Once again, both are right, if these are taken as common sense claims, and both are wrong, if this is intended to be a metaphysical dispute where one would be true, the real truth about where the table is, and the other would be false.

Newton’s idea of absolute space is an extension of this argument: “Ok, then, but there is still a really true truth about where the table is: it is here in absolute space.” But obviously this is just as wrong as all the other attempts to find out where the table “really” is. The basic problem is that “where is this” demands a relative response. It is a question about relationships in the first place. We can see this in fact even in Newton’s account: it is here in absolute space, that is, it is close to certain areas of absolute space and distant from certain other areas of absolute space.

Something similar will be true about existence to the degree that existence is also implicitly relative. “Where is this thing in the nature of things?” also requires a relative response: what relationship does this have to the rest of the order of reality? And in a similar way, questions about what is “really and truly true,” if taken to imply an abstraction from this relative order, will not have any answer. In a previous post, I said something like this in relation to the question, “how many things are here?” Reductionists and anti-reductionists disputing about whether a large object is “really and truly a cloud of particles” or “really and truly a single object,” are in exactly the same position as the disputants about the position of the table: both claims are true, in a common sense way, and both claims are false, if taken in a mutually exclusive metaphysical sense, since speaking of one or many is already to involve the perspective of the knower, in particular as knowing division and its negation.

Of course, an anti-reductionist has some advantage here because they can respond, “Actually, no one in a normal context would ever call a large object a cloud of particles. So it is not common sense at all.” This is true as far as it goes, but it is not really to the point, since no one denies in a common sense context that large objects also consist of many things, as a person has a head, legs, and arms, and a chair has legs and a back. It is not that the “cloud of particles” account is so much incorrect as it is adopting a very unusual perspective. Thus someone on the moon might say that the table is 240,000 miles away, which is a very unusual thing to say of a table, compared to saying that it is on the left or on the right.

None of this is unique to the question of “how many.” Since there is an irreducible element of relativity in being itself, we will be able to find some application to every question about the being of things.