Counterfactuals as Historical Fiction

Suppose someone reading Anne of Green Gables asks a question about what happened before the story begins. For example, what did Anne have for lunch 37 days before her arrival in Avonlea?

It is easy to see that this question does not have one true answer. There is no such thing as what she really had for lunch, because it is a story, and that meal is not included in it. On the other hand, despite the lack of any absolute truth here, some answers remain more reasonable than others. For example, “She had salad,” is a more sensible answer than “she ate crushed glass that day.” Just as I said in regard to “why” something is the case, one can give a partial answer, in the sense of showing that some options are more intelligible than others, without being able to exclude some options entirely.

These same things will apply to questions about a work of historical fiction, although the intended historical context will provide additional ways to show that some answers are more sensible than others. Thus if a story is set in ancient Rome, the claim that someone had corn for lunch is unreasonable due to the historical context, although not as unreasonable as some other possibilities that you could suggest.

Now consider a counterfactual question about your current situation: “What would you do if it were 120 degrees Fahrenheit in your house?”

There is no fundamental difference between this and the case of historical fiction. In effect, we just created a story about you: “It was 120 degrees in your house. You…”

Like the case of historical fiction, some answers will be more sensible than others, but there is no thing that you really would do in that situation. The story didn’t really take place, but if it did, it would have taken place with a lot more concrete detail, and that concrete detail could determine the specific answer to the question. If Anne of Green Gables were a true story, her concrete situation would have determined what she had for lunch that day. And if it were really 120 degrees in your house, what you would do would depend on how and why things got that way, as well as other factors in your concrete situation.

Some philosophers have spent a lot of time on this kind of counterfactual question, apparently largely from a desire for absolute answers. For example, some suggest that a counterfactual is true if the claim is true in the nearest possible world where the antecedent is true. In a similar way, Molinists argue that in order to be omniscient, God has to know what you would do if it were 120 degrees in your house, and that it must be one specific thing, so that there is one thing that you really would do in that situation. They call this kind of knowledge “middle” knowledge, namely something in between knowledge of what actually is and knowledge of what merely might have been.

All accounts of this kind are wasted effort. The brief account above is sufficient.

Rao’s Divergentism

The main point of this post is to encourage the reader who has not yet done so, to read Venkatesh Rao’s essay Can You Hear Me Now. I will not say too much about it. The purpose is potentially for future reference, and simply to point out a connection with some current topics here.

Rao begins:

The fundamental question of life, the universe and everything is the one popularized by the Verizon guy in the ad: Can you hear me now?

This conclusion grew out of a conversation I had about a year ago, with some friends, in which I proposed a modest-little philosophy I dubbed divergentism. Here is a picture.

https://206hwf3fj4w52u3br03fi242-wpengine.netdna-ssl.com/wp-content/uploads/2015/12/divergentism.jpg

Divergentism is the idea that as individuals grow out into the universe, they diverge from each other in thought-space. This, I argued, is true even if in absolute terms, the sum of shared beliefs is steadily increasing. Because the sum of beliefs that are not shared increases even faster on average. Unfortunately, you are unique, just like everybody else.

If you are a divergentist, you believe that as you age, the average answer to the fundamental Verizon question slowly drifts, as you age, from yes, to no, to silenceIf you’re unlucky, you’re a hedgehog and get unhappier and unhappier about this as you age. If you are lucky, you’re a fox and you increasingly make your peace with this condition. If you’re really lucky, you die too early to notice the slowly descending silence, before it even becomes necessary to Google the phrase existential horror.

To me, this seemed like a completely obvious idea. Much to my delight, most people I ran it by immediately hated it.

The entire essay is worth reading.

I would question whether this is really the “fundamental question of life, the universe, and everything,” but Rao has a point. People do tend to think of their life as meaningful on account of social connections, and if those social connections grow increasingly weaker, they will tend to worry that their life is becoming less meaningful.

The point about the intellectual life of an individual is largely true. This is connected to what I said about the philosophical progress of an individual some days ago. There is also a connection with Kuhn’s idea of how the progress of the sciences causes a gulf to arise between them in such a way that it becomes more and more difficult for scientists in different fields to communicate with one another. If we look at the overall intellectual life of an individual as a sort of individual advancing science, the “sciences” of each individual will generally speaking tend to diverge from one another, allowing less and less communication. This is not about people making mistakes, although obviously making mistakes will contribute to this process. As Rao says, it may be that “the sum of shared beliefs is steadily increasing,” but this will not prevent their intellectual lives overall from diverging, just as the divergence of the sciences does not result from falsity, but from increasingly detailed focus on different truths.

Technical Discussion and Philosophical Progress

In The Structure of Scientific Revolutions (p. 19-21), Thomas Kuhn remarks on the tendency of sciences to acquire a technical vocabulary and manner of discussion:

We shall be examining the nature of this highly directed or paradigm-based research in the next section, but must first note briefly how the emergence of a paradigm affects the structure of the group that practices the field. When, in the development of a natural science, an individual or group first produces a synthesis able to attract most of the next generation’s practitioners, the older schools gradually disappear. In part their disappearance is caused by their members’ conversion to the new paradigm. But there are always some men who cling to one or another of the older views, and they are simply read out of the profession, which thereafter ignores their work. The new paradigm implies a new and more rigid definition of the field. Those unwilling or unable to accommodate their work to it must proceed in isolation or attach themselves to some other group. Historically, they have often simply stayed in the departments of philosophy from which so many of the special sciences have been spawned. As these indications hint, it is sometimes just its reception of a paradigm that transforms a group previously interested merely in the study of nature into a profession or, at least, a discipline. In the sciences (though not in fields like medicine, technology, and law, of which the principal raison d’être is an external social need), the formation of specialized journals, the foundation of specialists’ societies, and the claim for a special place in the curriculum have usually been associated with a group’s first reception of a single paradigm. At least this was the case between the time, a century and a half ago, when the institutional pattern of scientific specialization first developed and the very recent time when the paraphernalia of specialization acquired a prestige of their own.

The more rigid definition of the scientific group has other consequences. When the individual scientist can take a paradigm for granted, he need no longer, in his major works, attempt to build his field anew, starting from first principles and justifying the use of each concept introduced. That can be left to the writer of textbooks. Given a textbook, however, the creative scientist can begin his research where it leaves off and thus concentrate exclusively upon the subtlest and most esoteric aspects of the natural phenomena that concern his group. And as he does this, his research communiqués will begin to change in ways whose evolution has been too little studied but whose modern end products are obvious to all and oppressive to many. No longer will his researches usually be embodied in books addressed, like Franklin’s Experiments . . . on Electricity or Darwin’s Origin of Species, to anyone who might be interested in the subject matter of the field. Instead they will usually appear as brief articles addressed only to professional colleagues, the men whose knowledge of a shared paradigm can be assumed and who prove to be the only ones able to read the papers addressed to them.

Today in the sciences, books are usually either texts or retrospective reflections upon one aspect or another of the scientific life. The scientist who writes one is more likely to find his professional reputation impaired than enhanced. Only in the earlier, pre-paradigm, stages of the development of the various sciences did the book ordinarily possess the same relation to professional achievement that it still retains in other creative fields. And only in those fields that still retain the book, with or without the article, as a vehicle for research communication are the lines of professionalization still so loosely drawn that the layman may hope to follow progress by reading the practitioners’ original reports. Both in mathematics and astronomy, research reports had ceased already in antiquity to be intelligible to a generally educated audience. In dynamics, research became similarly esoteric in the later Middle Ages, and it recaptured general intelligibility only briefly during the early seventeenth century when a new paradigm replaced the one that had guided medieval research. Electrical research began to require translation for the layman before the end of the eighteenth century, and most other fields of physical science ceased to be generally accessible in the nineteenth. During the same two centuries similar transitions can be isolated in the various parts of the biological sciences. In parts of the social sciences they may well be occurring today. Although it has become customary, and is surely proper, to deplore the widening gulf that separates the professional scientist from his colleagues in other fields, too little attention is paid to the essential relationship between that gulf and the mechanisms intrinsic to scientific advance.

As Kuhn says, this tendency has very well known results. Consider the papers constantly being published at arxiv.org, for example. If you are not familiar with the science in question, you will likely not be able to understand even the title, let alone the summary or the content. Many or most of the words will be meaningless to you, and even if they are not, their combinations will be.

It is also not difficult to see why this happens, and why it must happen. Everything we understand, we understand through form, which is a network of relationships. Thus if particular investigators wish to go into something in greater detail, these relationships will become more and more remote from the ordinary knowledge accessible to everyone. “Just say it in simple words” will become literally impossible, in the sense that explaining the “simple” statement will involve explaining a huge number of relationships that by default a person would have no knowledge of. That is the purpose, as Kuhn notes, of textbooks, namely to form connections between everyday knowledge and the more complex relationships studied in particular fields.

In Chapter XIII, Kuhn relates this sort of development with the word “science” and progress:

The preceding pages have carried my schematic description of scientific development as far as it can go in this essay. Nevertheless, they cannot quite provide a conclusion. If this description has at all caught the essential structure of a science’s continuing evolution, it will simultaneously have posed a special problem: Why should the enterprise sketched above move steadily ahead in ways that, say, art, political theory, or philosophy does not? Why is progress a perquisite reserved almost exclusively for the activities we call science? The most usual answers to that question have been denied in the body of this essay. We must conclude it by asking whether substitutes can be found.

Notice immediately that part of the question is entirely semantic. To a very great extent the term ‘science’ is reserved for fields that do progress in obvious ways. Nowhere does this show more clearly than in the recurrent debates about whether one or another of the contemporary social sciences is really a science. These debates have parallels in the pre-paradigm periods of fields that are today unhesitatingly labeled science. Their ostensible issue throughout is a definition of that vexing term. Men argue that psychology, for example, is a science because it possesses such and such characteristics. Others counter that those characteristics are either unnecessary or not sufficient to make a field a science. Often great energy is invested, great passion aroused, and the outsider is at a loss to know why. Can very much depend upon a definition of ‘science’? Can a definition tell a man whether he is a scientist or not? If so, why do not natural scientists or artists worry about the definition of the term? Inevitably one suspects that the issue is more fundamental. Probably questions like the following are really being asked: Why does my field fail to move ahead in the way that, say, physics does? What changes in technique or method or ideology would enable it to do so? These are not, however, questions that could respond to an agreement on definition. Furthermore, if precedent from the natural sciences serves, they will cease to be a source of concern not when a definition is found, but when the groups that now doubt their own status achieve consensus about their past and present accomplishments. It may, for example, be significant that economists argue less about whether their field is a science than do practitioners of some other fields of social science. Is that because economists know what science is? Or is it rather economics about which they agree?

The last point is telling. There is significantly more consensus among economists than among other sorts of social science, and consequently less worry about whether their field is scientific or not. The difference, then, is a difference of how much agreement is found. There is not necessarily any difference with respect to the kind of increasingly detailed thought that results in increasingly technical discussion. Kuhn remarks:

The theologian who articulates dogma or the philosopher who refines the Kantian imperatives contributes to progress, if only to that of the group that shares his premises. No creative school recognizes a category of work that is, on the one hand, a creative success, but is not, on the other, an addition to the collective achievement of the group. If we doubt, as many do, that nonscientific fields make progress, that cannot be because individual schools make none. Rather, it must be because there are always competing schools, each of which constantly questions the very foundations of the others. The man who argues that philosophy, for example, has made no progress emphasizes that there are still Aristotelians, not that Aristotelianism has failed to progress.

In this sense, if a particular school believes they possess the general truth about some matter (here theology or philosophy), they will quite naturally begin to discuss it in greater detail and in ways which are mainly intelligible to students of that school, just as happens in other technical fields. The field is only failing to progress in the sense that there are other large communities making contrasting claims, while we begin to use the term “science” and to speak of progress when one school completely dominates the field, and to a first approximation even people who know nothing about it assume that the particular school has things basically right.

What does this imply about progress in philosophy?

1. There is progress in the knowledge of topics that were once considered “philosophy,” but when we get to this point, we usually begin to use the name of a particular science, and with good reason, since technical specialization arises in the manner discussed above. Tyler Cowen discusses this sort of thing here.

2. Areas in which there doesn’t seem to be such progress, are probably most often areas where human knowledge remains at an early stage of development; it is precisely at such early stages that discussion does not have a technical character and when it can generally be understood by ordinary people without a specialized education. I pointed out that Aristotle was mistaken to assume that the sciences in general were fully developed. We would be equally mistaken to make such an assumption at the present times. As Kuhn notes, astronomy and mathematics achieved a “scientific” stage centuries before geology and biology did the same, and these long before economics and the like. The conclusion that one should draw is that metaphysics is hard, not that it is impossible or meaningless.

3. Even now, particular philosophical schools or individuals can make progress even without such consensus. This is evidently true if their overall position is correct or more correct than that of others, but it remains true even if their overall position is more wrong than that of other schools. Naturally, in the latter situation, they will not advance beyond the better position of other schools, but they will advance.

4. One who wishes to progress philosophically cannot avoid the tendency to technical specialization, even as an individual. This can be rather problematic for bloggers and people engaging in similar projects. John Nerst describes this problem:

The more I think about this issue the more unsolvable it seems to become. Loyal readers of a publication won’t be satisfied by having the same points reiterated again and again. News media get around this by focusing on, well, news. News are events, you can describe them and react to them for a while until they’re no longer news. Publications that aim to be more analytical and focus on discussing ideas, frameworks, slow processes and large-scale narratives instead of events have a more difficult task because their subject matter doesn’t change quickly enough for it to be possible to churn out new material every day without repeating yourself[2].

Unless you start building upwards. Instead of laying out stone after stone on the ground you put one on top of another, and then one on top of two others laying next to each other, and then one on top of all that, making a single three-level structure. In practice this means writing new material that builds on what came before, taking ideas further and further towards greater complexity, nuance and sophistication. This is what academia does when working correctly.

Mass media (including the more analytical outlets) do it very little and it’s obvious why: it’s too demanding[3]. If an article references six other things you need to have read to fully understand it you’re going to have a lot of difficulty attracting new readers.

Some of his conclusions:

I think that’s the real reason I don’t try to pitch more writing to various online publications. In my summary of 2018 I said it was because I thought my writing was to “too idiosyncratic, abstract and personal to fit in anywhere but my own blog”. Now I think the main reason is that I don’t so much want to take part in public debate or make myself a career. I want to explore ideas that lie at the edge of my own thinking. To do that I must assume that a reader knows broadly the same things I know and I’m just not that interested in writing about things where I can’t do that[9]. I want to follow my thoughts to for me new and unknown places — and import whatever packages I need to do it. This style isn’t compatible with the expectation that a piece will be able to stand on its own and deliver a single recognizable (and defensible) point[10].

The downside is of course obscurity. To achieve both relevance in the wider world and to build on other ideas enough to reach for the sky you need extraordinary success — so extraordinary that you’re essentially pulling the rest of the world along with you.

Obscurity is certainly one result. Another (relevant at least from the VP’s point of view) is disrespect. Scientists are generally respected despite the general incomprehensibility of their writing, on account of the absence of opposing schools. This lack leads people to assume that their arguments must be mostly right, even though they cannot understand them themselves. This can actually lead to an “Emperor has No Clothes” situation, where a scientist publishes something basically crazy, but others, even in his field, are reluctant to say so because they might appear to be the ones who are ignorant. As an example, consider Joy Christian’s “Disproof of Bell’s Theorem.” After reading this text, Scott Aaronson comments:

In response to my post criticizing his “disproof” of Bell’s Theorem, Joy Christian taunted me that “all I knew was words.”  By this, he meant that my criticisms were entirely based on circumstantial evidence, for example that (1) Joy clearly didn’t understand what the word “theorem” even meant, (2) every other sentence he uttered contained howling misconceptions, (3) his papers were written in an obscure, “crackpot” way, and (4) several people had written very clear papers pointing out mathematical errors in his work, to which Joy had responded only with bluster.  But I hadn’t actually studied Joy’s “work” at a technical level.  Well, yesterday I finally did, and I confess that I was astonished by what I found.  Before, I’d actually given Joy some tiny benefit of the doubt—possibly misled by the length and semi-respectful tone of the papers refuting his claims.  I had assumed that Joy’s errors, though ultimately trivial (how could they not be, when he’s claiming to contradict such a well-understood fact provable with a few lines of arithmetic?), would nevertheless be artfully concealed, and would require some expertise in geometric algebra to spot.  I’d also assumed that of course Joy would have some well-defined hidden-variable model that reproduced the quantum-mechanical predictions for the Bell/CHSH experiment (how could he not?), and that the “only” problem would be that, due to cleverly-hidden mistakes, his model would be subtly nonlocal.

What I actually found was a thousand times worse: closer to the stuff freshmen scrawl on an exam when they have no clue what they’re talking about but are hoping for a few pity points.  It’s so bad that I don’t understand how even Joy’s fellow crackpots haven’t laughed this off the stage.  Look, Joy has a hidden variable λ, which is either 1 or -1 uniformly at random.  He also has a measurement choice a of Alice, and a measurement choice b of Bob.  He then defines Alice and Bob’s measurement outcomes A and B via the following functions:

A(a,λ) = something complicated = (as Joy correctly observes) λ

B(b,λ) = something complicated = (as Joy correctly observes) -λ

I shit you not.  A(a,λ) = λ, and B(b,λ) = -λ.  Neither A nor B has any dependence on the choices of measurement a and b, and the complicated definitions that he gives for them turn out to be completely superfluous.  No matter what measurements are made, A and B are always perfectly anticorrelated with each other.

You might wonder: what could lead anyone—no matter how deluded—even to think such a thing could violate the Bell/CHSH inequalities?

“Give opposite answers in all cases” is in fact entirely irrelevant to Bell’s inequality. Thus the rest of Joy’s paper has no bearing whatsoever on the issue: it is essentially meaningless nonsense. Aaronson says he was possibly “misled by the length and semi-respectful tone of the papers refuting his claims.” But it is not difficult to see why people would be cautious in this way: the fear that they would turn out to be the ones missing something important.

The individual blogger in philosophy, however, is in a different position. If they wish to develop their thought it must become more technical, and there is no similar community backing that would cause others to assume that the writing basically makes sense. Thus, one’s writing is not only likely to become more and more obscure, but others will become more and more likely to assume that it is more or less meaningless word salad. This will happen even more to the degree that there is cultural opposition to one’s vocabulary, concepts, and topics.

Tautologies Not Trivial

In mathematics and logic, one sometimes speaks of a “trivial truth” or “trivial theorem”, referring to a tautology. Thus for example in this Quora question, Daniil Kozhemiachenko gives this example:

The fact that all groups of order 2 are isomorphic to one another and commutative entails that there are no non-Abelian groups of order 2.

This statement is a tautology because “Abelian group” here just means one that is commutative: the statement is like the customary example of asserting that “all bachelors are unmarried.”

Some extend this usage of “trivial” to refer to all statements that are true in virtue of the meaning of the terms, sometimes called “analytic.” The effect of this is to say that all statements that are logically necessary are trivial truths. An example of this usage can be seen in this paper by Carin Robinson. Robinson says at the end of the summary:

Firstly, I do not ask us to abandon any of the linguistic practises discussed; merely to adopt the correct attitude towards them. For instance, where we use the laws of logic, let us remember that there are no known/knowable facts about logic. These laws are therefore, to the best of our knowledge, conventions not dissimilar to the rules of a game. And, secondly, once we pass sentence on knowing, a priori, anything but trivial truths we shall have at our disposal the sharpest of philosophical tools. A tool which can only proffer a better brand of empiricism.

While the word “trivial” does have a corresponding Latin form that means ordinary or commonplace, the English word seems to be taken mainly from the “trivium” of grammar, rhetoric, and logic. This would seem to make some sense of calling logical necessities “trivial,” in the sense that they pertain to logic. Still, even here something is missing, since Robinson wants to include the truths of mathematics as trivial, and classically these did not pertain to the aforesaid trivium.

Nonetheless, overall Robinson’s intention, and presumably that of others who speak this way, is to suggest that such things are trivial in the English sense of “unimportant.” That is, they may be important tools, but they are not important for understanding. This is clear at least in our example: Robinson calls them trivial because “there are no known/knowable facts about logic.” Logical necessities tell us nothing about reality, and therefore they provide us with no knowledge. They are true by the meaning of the words, and therefore they cannot be true by reason of facts about reality.

Things that are logically necessary are not trivial in this sense. They are important, both in a practical way and directly for understanding the world.

Consider the failure of the Mars Climate Orbiter:

On November 10, 1999, the Mars Climate Orbiter Mishap Investigation Board released a Phase I report, detailing the suspected issues encountered with the loss of the spacecraft. Previously, on September 8, 1999, Trajectory Correction Maneuver-4 was computed and then executed on September 15, 1999. It was intended to place the spacecraft at an optimal position for an orbital insertion maneuver that would bring the spacecraft around Mars at an altitude of 226 km (140 mi) on September 23, 1999. However, during the week between TCM-4 and the orbital insertion maneuver, the navigation team indicated the altitude may be much lower than intended at 150 to 170 km (93 to 106 mi). Twenty-four hours prior to orbital insertion, calculations placed the orbiter at an altitude of 110 kilometers; 80 kilometers is the minimum altitude that Mars Climate Orbiter was thought to be capable of surviving during this maneuver. Post-failure calculations showed that the spacecraft was on a trajectory that would have taken the orbiter within 57 kilometers of the surface, where the spacecraft likely skipped violently on the uppermost atmosphere and was either destroyed in the atmosphere or re-entered heliocentric space.[1]

The primary cause of this discrepancy was that one piece of ground software supplied by Lockheed Martin produced results in a United States customary unit, contrary to its Software Interface Specification (SIS), while a second system, supplied by NASA, expected those results to be in SI units, in accordance with the SIS. Specifically, software that calculated the total impulse produced by thruster firings produced results in pound-force seconds. The trajectory calculation software then used these results – expected to be in newton seconds – to update the predicted position of the spacecraft.

It is presumably an analytic truth that the units defined in one way are unequal to the units defined in the other. But it was ignoring this analytic truth that was the primary cause of the space probe’s failure. So it is evident that analytic truths can be extremely important for practical purposes.

Such truths can also be important for understanding reality. In fact, they are typically more important for understanding than other truths. The argument against this is that if something is necessary in virtue of the meaning of the words, it cannot be telling us something about reality. But this argument is wrong for one simple reason: words and meaning themselves are both elements of reality, and so they do tell us something about reality, even when the truth is fully determinate given the meaning.

If one accepts the mistaken argument, in fact, sometimes one is led even further. Logically necessary truths cannot tell us anything important for understanding reality, since they are simply facts about the meaning of words. On the other hand, anything which is not logically necessary is in some sense accidental: it might have been otherwise. But accidental things that might have been otherwise cannot help us to understand reality in any deep way: it tells us nothing deep about reality to note that there is a tree outside my window at this moment, when this merely happens to be the case, and could easily have been otherwise. Therefore, since neither logically necessary things, nor logically contingent things, can help us to understand reality in any deep or important way, such understanding must be impossible.

It is fairly rare to make such an argument explicitly, but it is a common implication of many arguments that are actually made or suggested, or it at least influences the way people feel about arguments and understanding.  For example, consider this comment on an earlier post. Timocrates suggests that (1) if you have a first cause, it would have to be a brute fact, since it doesn’t have any other cause, and (2) describing reality can’t tell us any reasons but is “simply another description of how things are.” The suggestion behind these objections is that the very idea of understanding is incoherent. As I said there in response, it is true that every true statement is in some sense “just a description of how things are,” but that was what a true statement was meant to be in any case. It surely was not meant to be a description of how things are not.

That “analytic” or “tautologous” statements can indeed provide a non-trivial understanding of reality can also easily be seen by example. Some examples from this blog:

Good and being. The convertibility of being and goodness is “analytic,” in the sense that carefully thinking about the meaning of desire and the good reveals that a universe where existence as such was bad, or even failed to be good, is logically impossible. In particular, it would require a universe where there is no tendency to exist, and this is impossible given that it is posited that something exists.

Natural selection. One of the most important elements of Darwin’s theory of evolution is the following logically necessary statement: the things that have survived are more likely to be the things that were more likely to survive, and less likely to be the things that were less likely to survive.

Limits of discursive knowledge. Knowledge that uses distinct thoughts and concepts is necessarily limited by issues relating to self-reference. It is clear that this is both logically necessary, and tells us important things about our understanding and its limits.

Knowledge and being. Kant rightly recognized a sense in which it is logically impossible to “know things as they are in themselves,” as explained in this post. But as I said elsewhere, the logically impossible assertion that knowledge demands an identity between the mode of knowing and the mode of being is the basis for virtually every sort of philosophical error. So a grasp on the opposite “tautology” is extremely useful for understanding.

 

Employer and Employee Model: Truth

In the remote past, I suggested that I would someday follow up on this post. In the current post, I begin to keep that promise.

We can ask about the relationship of the various members of our company with the search for truth.

The CEO, as the predictive engine, has a fairly strong interest in truth, but only insofar as truth is frequently necessary in order to get predictive accuracy. Consequently our CEO will usually insist on the truth when it affects our expectations regarding daily life, but it will care less when we consider things remote from the senses. Additionally, the CEO is highly interested in predicting the behavior of the Employee, and it is not uncommon for falsehood to be better than truth for this purpose.

To put this in another way, the CEO’s interest in truth is instrumental: it is sometimes useful for the CEO’s true goal, predictive accuracy, but not always, and in some cases it can even be detrimental.

As I said here, the Employee is, roughly speaking, the human person as we usually think of one, and consequently the Employee has the same interest in truth that we do. I personally consider truth to be an ultimate end,  and this is probably the opinion of most people, to a greater or lesser degree. In other words, most people consider truth a good thing, even apart from instrumental considerations. Nonetheless, all of us care about various things besides truth, and therefore we also occasionally trade truth for other things.

The Vice President has perhaps the least interest in truth. We could say that they too have some instrumental concern about truth. Thus for example the VP desires food, and this instrumentally requires true ideas about where food is to be found. Nonetheless, as I said in the original post, the VP is the least rational and coherent, and may easily fail to notice such a need. Thus the VP might desire the status resulting from winning an argument, so to speak, but also desire the similar status that results from ridiculing the person holding an opposing view. The frequent result is that a person believes the falsehood that ridiculing an opponent generally increases the chance that they will change their mind (e.g. see John Loftus’s attempt to justify ridicule.)

Given this account, we can raise several disturbing questions.

First, although we have said the Employee values truth in itself, can this really be true, rather than simply a mistaken belief on the part of the Employee? As I suggested in the original account, the Employee is in some way a consequence of the CEO and the VP. Consequently, if neither of these places intrinsic value on truth, how is it possible that the Employee does?

Second, even if the Employee sincerely places an intrinsic value on truth, how is this not a misplaced value? Again, if the Employee is something like a result of the others, what is good for the Employee should be what is good for the others, and thus if truth is not intrinsically good for the others, it should not be intrinsically good for the Employee.

In response to the first question, the Employee can indeed believe in the intrinsic value of truth, and of many other things to which the CEO and VP do not assign intrinsic value. This happens because as we are considering the model, there is a real division of labor, even if the Employee arises historically in a secondary manner. As I said in the other post, the Employee’s beliefs are our beliefs, and the Employee can believe anything that we believe. Furthermore, the Employee can really act on such beliefs about the goodness of truth or other things, even when the CEO and VP do not have the same values. The reason for this is the same as the reason that the CEO will often go along with the desires of the VP, even though the CEO places intrinsic value only on predictive accuracy. The linked post explains, in effect, why the CEO goes along with sex, even though only the VP really wants it. In a similar way, if the Employee believes that sex outside of marriage is immoral, the CEO often goes along with avoiding such sex, even though the CEO cares about predictive accuracy, not about sex or its avoidance. Of course, in this particular case, there is a good chance of conflict between the Employee and VP, and the CEO dislikes conflict, since it makes it harder to predict what the person overall will end up doing. And since the VP very rarely changes its mind in this case, the CEO will often end up encouraging the Employee to change their mind about the morality of such sex: thus one of the most frequent reasons why people abandon their religion is that it says that sex in some situations is wrong, but they still desire sex in those situations.

In response to the second, the Employee is not wrong to suppose that truth is intrinsically valuable. The argument against this would be that the human good is based on human flourishing, and (it is claimed) we do not need truth for such flourishing, since the CEO and VP do not care about truth in itself. The problem with this is that such flourishing requires that the Employee care about truth, and even the CEO needs the Employee to care in this way, for the sake of its own goal of predictive accuracy. Consider a real-life company: the employer does not necessarily care about whether the employee is being paid, considered in itself, but only insofar as it is instrumentally useful for convincing the employee to work for the employer. But the employer does care about whether the employee cares about being paid: if the employee does not care about being paid, they will not work for the employer.

Concern for truth in itself, apart from predictive accuracy, affects us when we consider things that cannot possibly affect our future experience: thus in previous cases I have discussed the likelihood that there are stars and planets outside the boundaries of the visible universe. This is probably true; but if I did not care about truth in itself, I might as well say that the universe is surrounded by purple elephants. I do not expect any experience to verify or falsify the claim, so why not make it? But now notice the problem for the CEO: the CEO needs to predict what the Employee is going to do, including what they will say and believe. This will instantly become extremely difficult if the Employee decides that they can say and believe whatever they like, without regard for truth, whenever the claim will not affect their experiences. So for its own goal of predictive accuracy, the CEO needs the Employee to value truth in itself, just as an ordinary employer needs their employee to value their salary.

In real life this situation can cause problems. The employer needs their employee to care about being paid, but if they care too much, they may constantly be asking for raises, or they may quit and go work for someone who will pay more. The employer does not necessarily like these situations. In a similar way, the CEO in our company may worry if the Employee insists too much on absolute truth, because as discussed elsewhere, it can lead to other situations with unpredictable behavior from the Employee, or to situations where there is a great deal of uncertainty about how society will respond to the Employee’s behavior.

Overall, this post perhaps does not say much in substance that we have not said elsewhere, but it will perhaps provide an additional perspective on these matters.

Schrödinger’s Cat

Erwin Schrödinger describes the context for his thought experiment with a cat:

The other alternative consists of granting reality only to the momentarily sharp determining parts – or in more general terms to each variable a sort of realization just corresponding to the quantum mechanical statistics of this variable at the relevant moment.

That it is in fact not impossible to express the degree and kind of blurring of all variables in one perfectly clear concept follows at once from the fact that Q.M. as a matter of fact has and uses such an instrument, the so-called wave function or psi-function, also called system vector. Much more is to be said about it further on. That it is an abstract, unintuitive mathematical construct is a scruple that almost always surfaces against new aids to thought and that carries no great message. At all events it is an imagined entity that images the blurring of all variables at every moment just as clearly and faithfully as does the classical model its sharp numerical values. Its equation of motion too, the law of its time variation, so long as the system is left undisturbed, lags not one iota, in clarity and determinacy, behind the equations of motion of the classical model. So the latter could be straight-forwardly replaced by the psi-function, so long as the blurring is confined to atomic scale, not open to direct control. In fact the function has provided quite intuitive and convenient ideas, for instance the “cloud of negative electricity” around the nucleus, etc. But serious misgivings arise if one notices that the uncertainty affects macroscopically tangible and visible things, for which the term “blurring” seems simply wrong. The state of a radioactive nucleus is presumably blurred in such a degree and fashion that neither the instant of decay nor the direction, in which the emitted alpha-particle leaves the nucleus, is well-established. Inside the nucleus, blurring doesn’t bother us. The emerging particle is described, if one wants to explain intuitively, as a spherical wave that continuously emanates in all directions and that impinges continuously on a surrounding luminescent screen over its full expanse. The screen however does not show a more or less constant uniform glow, but rather lights up at one instant at one spot – or, to honor the truth, it lights up now here, now there, for it is impossible to do the experiment with only a single radioactive atom. If in place of the luminescent screen one uses a spatially extended detector, perhaps a gas that is ionised by the alpha-particles, one finds the ion pairs arranged along rectilinear columns, that project backwards on to the bit of radioactive matter from which the alpha-radiation comes (C.T.R. Wilson’s cloud chamber tracks, made visible by drops of moisture condensed on the ions).

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer which shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted to the atomic domain becomes transformed into macroscopic indeterminacy, which can then be resolved by direct observation. That prevents us from so naively accepting as valid a “blurred model” for representing reality. In itself it would not embody anything unclear or contradictory. There is a difference between a shaky or out-of-focus photograph and a snapshot of clouds and fog banks.

We see here the two elements described at the end of this earlier post. The psi-function is deterministic, but there seems to be an element of randomness when someone comes to check on the cat.

Hugh Everett amusingly describes a similar experiment performed on human beings (but without killing anyone):

Isolated somewhere out in space is a room containing an observer, A, who is about to perform a measurement upon a system S. After performing his measurement he will record the result in his notebook. We assume that he knows the state function of S (perhaps as a result of previous measurement), and that it is not an eigenstate of the measurement he is about to perform. A, being an orthodox quantum theorist, then believes that the outcome of his measurement is undetermined and that the process is correctly described by Process 1 [namely a random determination caused by measurement].

In the meantime, however, there is another observer, B, outside the room, who is in possession of the state function of the entire room, including S, the measuring apparatus, and A, just prior to the measurement. B is only interested in what will be found in the notebook one week hence, so he computes the state function of the room for one week in the future according to Process 2 [namely the deterministic  wave function]. One week passes, and we find B still in possession of the state function of the room, which this equally orthodox quantum theorist believes to be a complete description of the room and its contents. If B’s state function calculation tells beforehand exactly what is going to be in the notebook, then A is incorrect in his belief about the indeterminacy of the outcome of his measurement. We therefore assume that B’s state function contains non-zero amplitudes over several of the notebook entries.

At this point, B opens the door to the room and looks at the notebook (performs his observation.) Having observed the notebook entry, he turns to A and informs him in a patronizing manner that since his (B’s) wave function just prior to his entry into the room, which he knows to have been a complete description of the room and its contents, had non-zero amplitude over other than the present result of the measurement, the result must have been decided only when B entered the room, so that A, his notebook entry, and his memory about what occurred one week ago had no independent objective existence until the intervention by B. In short, B implies that A owes his present objective existence to B’s generous nature which compelled him to intervene on his behalf. However, to B’s consternation, A does not react with anything like the respect and gratitude he should exhibit towards B, and at the end of a somewhat heated reply, in which A conveys in a colorful manner his opinion of B and his beliefs, he rudely punctures B’s ego by observing that if B’s view is correct, then he has no reason to feel complacent, since the whole present situation may have no objective existence, but may depend upon the future actions of yet another observer.

Schrödinger’s problem was that the wave equation seems to describe something “blurred,” but if we assume that is because something blurred exists, it seems to contradict our experience which is of something quite distinct: a live cat or a dead cat, but not something in between.

Everett proposes that his interpretation of quantum mechanics is able to resolve this difficulty. After presenting other interpretations, he proposes his own (“Alternative 5”):

Alternative 5: To assume the universal validity of the quantum description, by the complete abandonment of Process 1 [again, this was the apparently random measurement process]. The general validity of pure wave mechanics, without any statistical assertions, is assumed for all physical systems, including observers and measuring apparata. Observation processes are to be described completely by the state function of the composite system which includes the observer and his object-system, and which at all times obeys the wave equation (Process 2).

It is evident that Alternative 5 is a theory of many advantages. It has the virtue of logical simplicity and it is complete in the sense that it is applicable to the entire universe. All processes are considered equally (there are no “measurement processes” which play any preferred role), and the principle of psycho-physical parallelism is fully maintained. Since the universal validity of the state function is asserted, one can regard the state functions themselves as the fundamental entities, and one can even consider the state function of the whole universe. In this sense this theory can be called the theory of the “universal wave function,” since all of physics is presumed to follow from this function alone. There remains, however, the question whether or not such a theory can be put into correspondence with our experience.

This present thesis is devoted to showing that this concept of a universal wave mechanics, together with the necessary correlation machinery for its interpretation, forms a logically self consistent description of a universe in which several observers are at work.

Ultimately, Everett’s response to Schrödinger is that the cat is indeed “blurred,” and that this never goes away. When someone checks on the cat, the person checking is also “blurred,” becoming a composite of someone seeing a dead cat and someone seeing a live cat. However, these are in effect two entirely separate worlds, one in which someone sees a live cat, and one in which someone sees a dead cat.

Everett mentions “the necessary correlation machinery for its interpretation,” because a mathematical theory of physics as such does not necessarily say that anyone should see anything in particular. So for example when Newton when says that there is a gravitational attraction between masses inversely proportional to the square of their distance, what exactly should we expect to see, given that? Obviously there is no way to answer this without adding something, and ultimately we need to add something non-mathematical, namely something about the way our experiences work.

I will not pretend to judge whether or not Everett does a good job defending his position. There is an interesting point here, whether or not his defense is ultimately a good one. “Orthodox” quantum mechanics, as Everett calls it, only gives statistical predictions about the future, and as long as nothing is added to the theory, it implies that deterministic predictions are impossible. It follows that if the position in our last post, on an open future, was correct, it must be possible to explain the results of quantum mechanics in terms of many worlds or multiple timelines. And I do not merely mean that we can give the same predictions with a one-world account or with a many world account. I mean that there must be a many-world account such that its contents are metaphysically identical to the contents of a one-world account with an open future.

This would nonetheless leave undetermined the question of what sort of account would be most useful to us in practice.

Aristotle on Future Contingents

In Chapter 9 of On Interpretation, Aristotle argues that at least some statements about the future need to be exempted from the principle of Excluded Middle:

In the case of that which is or which has taken place, propositions, whether positive or negative, must be true or false. Again, in the case of a pair of contradictories, either when the subject is universal and the propositions are of a universal character, or when it is individual, as has been said,’ one of the two must be true and the other false; whereas when the subject is universal, but the propositions are not of a universal character, there is no such necessity. We have discussed this type also in a previous chapter.

When the subject, however, is individual, and that which is predicated of it relates to the future, the case is altered. For if all propositions whether positive or negative are either true or false, then any given predicate must either belong to the subject or not, so that if one man affirms that an event of a given character will take place and another denies it, it is plain that the statement of the one will correspond with reality and that of the other will not. For the predicate cannot both belong and not belong to the subject at one and the same time with regard to the future.

Thus, if it is true to say that a thing is white, it must necessarily be white; if the reverse proposition is true, it will of necessity not be white. Again, if it is white, the proposition stating that it is white was true; if it is not white, the proposition to the opposite effect was true. And if it is not white, the man who states that it is making a false statement; and if the man who states that it is white is making a false statement, it follows that it is not white. It may therefore be argued that it is necessary that affirmations or denials must be either true or false.

Now if this be so, nothing is or takes place fortuitously, either in the present or in the future, and there are no real alternatives; everything takes place of necessity and is fixed. For either he that affirms that it will take place or he that denies this is in correspondence with fact, whereas if things did not take place of necessity, an event might just as easily not happen as happen; for the meaning of the word ‘fortuitous’ with regard to present or future events is that reality is so constituted that it may issue in either of two opposite directions. Again, if a thing is white now, it was true before to say that it would be white, so that of anything that has taken place it was always true to say ‘it is’ or ‘it will be’. But if it was always true to say that a thing is or will be, it is not possible that it should not be or not be about to be, and when a thing cannot not come to be, it is impossible that it should not come to be, and when it is impossible that it should not come to be, it must come to be. All, then, that is about to be must of necessity take place. It results from this that nothing is uncertain or fortuitous, for if it were fortuitous it would not be necessary.

The argument here is that if it is already true, for example, that I will eat breakfast tomorrow, then I will necessarily eat breakfast tomorrow, and there is no option about this and no ability of anything to prevent it. Aristotle is here taking it for granted that some things about the future are uncertain, and is using this as a reductio against the position that such claims can be already true. He goes on to give additional reasons for the same thing:

Again, to say that neither the affirmation nor the denial is true, maintaining, let us say, that an event neither will take place nor will not take place, is to take up a position impossible to defend. In the first place, though facts should prove the one proposition false, the opposite would still be untrue. Secondly, if it was true to say that a thing was both white and large, both these qualities must necessarily belong to it; and if they will belong to it the next day, they must necessarily belong to it the next day. But if an event is neither to take place nor not to take place the next day, the element of chance will be eliminated. For example, it would be necessary that a sea-fight should neither take place nor fail to take place on the next day.

These awkward results and others of the same kind follow, if it is an irrefragable law that of every pair of contradictory propositions, whether they have regard to universals and are stated as universally applicable, or whether they have regard to individuals, one must be true and the other false, and that there are no real alternatives, but that all that is or takes place is the outcome of necessity. There would be no need to deliberate or to take trouble, on the supposition that if we should adopt a certain course, a certain result would follow, while, if we did not, the result would not follow. For a man may predict an event ten thousand years beforehand, and another may predict the reverse; that which was truly predicted at the moment in the past will of necessity take place in the fullness of time.

Further, it makes no difference whether people have or have not actually made the contradictory statements. For it is manifest that the circumstances are not influenced by the fact of an affirmation or denial on the part of anyone. For events will not take place or fail to take place because it was stated that they would or would not take place, nor is this any more the case if the prediction dates back ten thousand years or any other space of time. Wherefore, if through all time the nature of things was so constituted that a prediction about an event was true, then through all time it was necessary that that should find fulfillment; and with regard to all events, circumstances have always been such that their occurrence is a matter of necessity. For that of which someone has said truly that it will be, cannot fail to take place; and of that which takes place, it was always true to say that it would be.

Yet this view leads to an impossible conclusion; for we see that both deliberation and action are causative with regard to the future, and that, to speak more generally, in those things which are not continuously actual there is potentiality in either direction. Such things may either be or not be; events also therefore may either take place or not take place. There are many obvious instances of this. It is possible that this coat may be cut in half, and yet it may not be cut in half, but wear out first. In the same way, it is possible that it should not be cut in half; unless this were so, it would not be possible that it should wear out first. So it is therefore with all other events which possess this kind of potentiality. It is therefore plain that it is not of necessity that everything is or takes place; but in some instances there are real alternatives, in which case the affirmation is no more true and no more false than the denial; while some exhibit a predisposition and general tendency in one direction or the other, and yet can issue in the opposite direction by exception.

Now that which is must needs be when it is, and that which is not must needs not be when it is not. Yet it cannot be said without qualification that all existence and non-existence is the outcome of necessity. For there is a difference between saying that that which is, when it is, must needs be, and simply saying that all that is must needs be, and similarly in the case of that which is not. In the case, also, of two contradictory propositions this holds good. Everything must either be or not be, whether in the present or in the future, but it is not always possible to distinguish and state determinately which of these alternatives must necessarily come about.

Let me illustrate. A sea-fight must either take place to-morrow or not, but it is not necessary that it should take place to-morrow, neither is it necessary that it should not take place, yet it is necessary that it either should or should not take place to-morrow. Since propositions correspond with facts, it is evident that when in future events there is a real alternative, and a potentiality in contrary directions, the corresponding affirmation and denial have the same character.

This is the case with regard to that which is not always existent or not always nonexistent. One of the two propositions in such instances must be true and the other false, but we cannot say determinately that this or that is false, but must leave the alternative undecided. One may indeed be more likely to be true than the other, but it cannot be either actually true or actually false. It is therefore plain that it is not necessary that of an affirmation and a denial one should be true and the other false. For in the case of that which exists potentially, but not actually, the rule which applies to that which exists actually does not hold good. The case is rather as we have indicated.

Basically, then, there are two arguments. First there is the argument that if statements about the future are already true, the future is necessary. If a sea battle will take place tomorrow, it will necessarily take place. Second, there is the argument that this excludes deliberation. If a sea battle will take place tomorrow, then it will necessarily take place, and no place remains for deliberation and decision about whether to fight the sea battle. Whether you decide to fight or not, it will necessarily take place.

Unfortunately for Aristotle, both arguments fail. Consider the first argument about necessity. Aristotle’s example is that “if it is true to say that a thing is white, it must necessarily be white.” But this is hypothetical necessity, not absolute necessity. A thing must be white if it is true that is white, but that does not mean that “it must be white, period.” Thus for example I have a handkerchief, and it happens to be white. If it is true that it is white, then it must be white. But it would be false to simply say, “My handkerchief is necessarily white.” Since I can dye it other colors, obviously it is not simply necessary for it to be white.

In a similar way, of course it is true that if a sea battle will take place, it will take place. It does not follow at all that “it will necessarily take place, period.”

Again, consider the second argument, that deliberation would be unnecessary. Aristotle makes the point that deliberation is causative with respect to the future. But gravity is also causative with respect to the future, as for example when gravity causes a cup to fall from a desk. It does not follow either that the cup must be able not to fall, nor that gravity is unnecessary. In a similar way, a sea battle takes place because certain people deliberated and decided to fight. If it was already true that it was going to take place, then it also already true that they were going to decide to fight. It does not follow that their decision was unnecessary.

Consider the application to gravity. It is already true that if the cup is knocked from the desk, it will fall. It does not follow that gravity will not cause the fall: in fact, it is true precisely because gravity will cause the fall. In a similar way, if it true that the battle will take place, it is true because the decision will be made.

This earlier discussion about determinism is relevant to this point. Asserting that there is a definite outcome that our deliberations will arrive at, in each case, goes against our experience in no way. The feeling of “free will,” in any case, has a different explanation, whether or not determinism is true.

On the other hand, there is also no proof that there is such a determinate outcome, even if in some cases there are things that would suggest it. What happens if in fact there is nothing ensuring one outcome rather than another?

Here we could make a third argument on Aristotle’s behalf, although he did not make it himself. If the present is truly open to alternative outcomes, then it seems that nothing exists that could make it be true that “a sea battle will take place,” and false that “a sea battle will not take place.” Presumably if a statement is true, there must be something in reality which is the cause of the statement’s truth. Now there does not seem to be anything in reality, in this scenario, which could be a cause of truth. Therefore it does not seem that either alternative could be true, and Aristotle would seem to be right.

I will not attempt to refute this argument at this point, but I will raise two difficulties. First of all, it is not clear that his claim is even coherent. Aristotle says that “either there will be a sea battle or there will not be,” is true, but that “there will be a sea battle” is not true, and “there will not be a sea battle” is not true. This does not seem to be logically consistent, and it is not clear that we can even understand what is being said. I will not push this objection too hard, however, lest I be accused of throwing stones from a glass house.

Second, the argument that there is nothing in reality that could cause the truth of a statement might apply to the past as well as to the future. There is a tree outside my window right now. What was in that place exactly 100 million years ago to this moment? It is not obvious that there is anything in the present world which could be the cause of the truth of any statement about this. One might object that the past is far more determinate than the future. There are plenty of things in the present world that might be the cause of the truth of the statement, “World War II actually happened.” It is hard to see how you could possibly have arrived at the present world without it, and this “necessity” of World War II in order to arrive at the present world could be the cause of truth. The problem is that there is still no proof that this is universal. Once things are far enough in past, like 100 million years, perhaps minor details become indeterminate. Will Aristotle really want to conclude that some statements about the past are neither true nor false?

I will more or less leave things here without resolving them in this post, although I will give a hint (without proof at this time) regarding the truth of the matter. It turns out that quantum mechanics can be interpreted in two ways. In one way, it is a deterministic theory, and in this way it is basically time reversible. The present fully determines the past, but it equally fully determines the future. Interpreted in another way, it is an indeterministic theory which leaves the future uncertain. But understood in this way, it also leaves the past uncertain.