What You Learned Before You Were Born

In Plato’s Meno, Socrates makes the somewhat odd claim that the ability of people to learn things without being directly told them proves that somehow they must have learned them or known them in advance. While we can reasonably assume this is wrong in a literal sense, there is some likeness of the truth here.

The whole of a human life is a continuous learning process generally speaking without any sudden jumps. We think of a baby’s learning as different from the learning of a child in school, and the learning of the child as rather different from the learning of an adult. But if you look at that process in itself, there may be sudden jumps in a person’s situation, such as when they graduate from school or when they get married, but there are no sudden jumps from not knowing anything about a topic or an object to suddenly knowing all about it. The learning itself happens gradually. It is the same with the manner in which it takes place; adults do indeed learn in a different manner from that in which children or infants learn. But if you ask how that manner got to be different, it certainly did so gradually, not suddenly.

But in addition to all this, there is a kind of “knowledge” that is not learned at all during one’s life, but is possessed from the beginning. From the beginning people have the ability to interact with the world in such a way that they will survive and go on to learn things. Thus from the beginning they must “know” how to do this. Now one might object that infants have no such knowledge, and that the only reason they survive is that their parents or others keep them alive. But the objection is mistaken: infants know to cry out when they hungry or in pain, and this is part of what keeps them alive. Similarly, an infant knows to drink the milk from its mother rather than refusing it, and this is part of what keeps it alive. Similarly in regard to learning, if an infant did not know the importance of paying close attention to speech sounds, it would never learn a language.

When was this “knowledge” learned? Not in the form of a separated soul, but through the historical process of natural selection.

Selection and Artificial Intelligence

This has significant bearing on our final points in the last post. Is the learning found in AI in its current forms more like the first kind of learning above, or like the kind found in the process of natural selection?

There may be a little of both, but the vast majority of learning in such systems is very much the second kind, and not the first kind. For example, AlphaGo is trained by self-play, where moves and methods of play that tend to lose are eliminated in much the way that in the process of natural selection, manners of life that do not promote survival are eliminated. Likewise a predictive model like GPT-3 is trained, through a vast number of examples, to avoid predictions that turn out to be less accurate and to make predictions that tend to be more accurate.

Now (whether or not this is done in individual cases) you might take a model of this kind and fine tune it based on incoming data, perhaps even in real time, which is a bit more like the first kind of learning. But in our actual situation, the majority of what is known by our AI systems is based on the second kind of learning.

This state of affairs should not be surprising, because the first kind of learning described above is impossible without being preceded by the second. The truth in Socrates’ claim is that if a system does not already “know” how to learn, of course it will not learn anything.

Intelligence and Universality

Elsewhere I have mentioned the argument, often made in great annoyance, that people who take some new accomplishment in AI or machine learning and proclaim that it is “not real intelligence” or that the algorithm is “still fundamentally stupid”, and other things of that kind, are “moving the goalposts,” especially since in many such cases, there really were people who said that something that could do such a thing would be intelligent.

As I said in the linked post, however, there is no problem of moving goalposts unless you originally had them in the wrong place. And attaching intelligence to any particular accomplishment, such as “playing chess well” or even “producing a sensible sounding text,” or anything else with that sort of particularity, is misplacing the goalposts. As we might remember, what excited Francis Bacon was the thought that there were no clear limits, at all, on what science (namely the working out of intelligence) might accomplish. In fact he seems to have believed that there were no limits at all, which is false. Nonetheless, he was correct that those limits are extremely vague, and that much that many assumed to be impossible would turn out to be possible. In other words, human intelligence does not have very meaningful limits on what it can accomplish, and artificial intelligence will be real intelligence (in the same sense that artificial diamonds can be real diamonds) when artificial intelligence has no meaningful limits on what it can accomplish.

I have no time for playing games with objections like, “but humans can’t multiply two 1000 digit numbers in one second, and no amount of thought will give them that ability.” If you have questions of this kind, please answer them for yourself, and if you can’t, sit still and think about it until you can. I have full confidence in your ability to find the answers, given sufficient thought.

What is needed for “real intelligence,” then, is universality. In a sense everyone knew all along that this was the right place for the goalposts. Even if someone said “if a machine can play chess, it will be intelligent,” they almost certainly meant that their expectation was that a machine that could play chess would have no clear limits on what it could accomplish. If you could have told them for a fact that the future would be different: that a machine would be able to play chess but that (that particular machine) would never be able to do anything else, they would have conceded that the machine would not be intelligent.

Training and Universality

Current AI systems are not universal, and clearly have no ability whatsoever to become universal, without first undergoing deep changes in those systems, changes that would have to be initiated by human beings. What is missing?

The problem is the training data. The process of evolution produced the general ability to learn by using the world itself as the training data. In contrast, our AI systems take a very small subset of the world (like a large set of Go games or a large set of internet text), and train a learning system on that subset. Why take a subset? Because the world is too large to fit into a computer, especially if that computer is a small part of the world.

This suggests that going from the current situation to “artificial but real” intelligence is not merely a question of making things better and better little by little. There is a more fundamental problem that would have to be overcome, and it won’t be overcome simply by larger training sets, by faster computing, and things of this kind. This does not mean that the problem is impossible, but it may turn out to be much more difficult than people expected. For example, if there is no direct solution, people might try to create Robin Hanson’s “ems”, where one would more or less copy the learning achieved by natural selection. Or even if that is not done directly, a better understanding of what it means to “know how to learn,” might lead to a solution, although probably one that would not depend on training a model on massive amounts of data.

What happens if there is no solution, or no solution is found? At times people will object to the possibility of such a situation along these times: “this situation is incoherent, since obviously people will be able to keep making better and better machine learning systems, so sooner or later they will be just as good as human intelligence.” But in fact the situation is not incoherent; if it happened, various types of AI system would approach various asymptotes, and this is entirely coherent. We can already see this in the case of GPT-3, where as I noted, there is an absolute bound on its future performance. In general such bounds in their realistic form are more restrictive than their in-principle form; I do not actually expect some successor to GPT-3 to write sensible full length books. Note however that even if this happened (as long as the content itself was not fundamentally better than what humans have done) I would not be “moving the goalposts”; I do not expect that to happen, but its happening would not imply any fundamental difference, since this is still within the “absolute” bounds that we have discussed. In contrast, if a successor to GPT-3 published a cure for cancer, this would prove that I had made some mistake on the level of principle.

Some Remarks on GPT-N

At the end of May, OpenAI published a paper on GPT-3, a language model which is a successor to their previous version, GPT-2. While quite impressive, the reaction from many people interested in artificial intelligence has been seriously exaggerated. Sam Altman, OpenAI’s CEO, has said as much himself:

The GPT-3 hype is way too much. It’s impressive (thanks for the nice compliments!) but it still has serious weaknesses and sometimes makes very silly mistakes. AI is going to change the world, but GPT-3 is just a very early glimpse. We have a lot still to figure out.

I used “GPT-N” in the title here because most of the comments I intend to make are almost completely general, and will apply to any future version that uses sufficiently similar methods.

What it does

GPT-3 is a predictive language model, that is, given an input text it tries to predict what would come next, much in the way that if you read the first few words of this sentence with the rest covered up, you might try to guess what would be likely to come next. To the degree that it does this well, it can be used to generate text from a “prompt,” that is, we give it something like a few words or a few sentences, and then add whatever it predicts should come next. For example, let’s take this very blog post and see what GPT-3 would like to say:

What it doesn’t do

While GPT-3 does seem to be able to generate some pretty interesting results, there are several limitations that need to be taken into account when using it.

First and foremost, and most importantly, it can’t do anything without a large amount of input data. If you want it to write like “a real human,” you need to give it a lot of real human writing. For most people, this means copying and pasting a lot. And while the program is able to read through that and get a feel for the way humans communicate, you can’t exactly use it to write essays or research papers. The best you could do is use it as a “fill in the blank” tool to write stories, and that’s not even very impressive.

While the program does learn from what it reads and is quite good at predicting words and phrases based on what has already been written, this method isn’t very effective at producing realistic prose. The best you could hope for is something like the “Deep Writing Machine” Twitter account, which spits out disconnected phrases in an ominous, but very bland voice.

In addition, the model is limited only to language. It does not understand context or human thought at all, so it has no way of tying anything together. You could use it to generate a massive amount of backstory and other material for a game, but that’s about it.

Finally, the limitations in writing are only reinforced by the limitations in reading. Even with a large library to draw on, the program is only as good as the parameters set for it. Even if you set it to the greatest writers mankind has ever known, without any special parameters, its writing would be just like anyone else’s.

The Model

GPT-3 consists of several layers. The first layer is a “memory network” that involves the program remembering previously entered data and using it when appropriate (i.e. it remembers commonly misspelled words and frequently used words). The next layer is the reasoning network, which involves common sense logic (i.e. if A, then B). The third is the repetition network, which involves pulling previously used material from memory and using it to create new combinations (i.e. using previously used words in new orders).

I added the bold formatting, the rest is as produced by the model. This was also done in one run, without repetitions. This is an important qualification, since many examples on the internet have been produced by deleting something produced by the model and forcing it to generate something new until something sensible resulted. Note that the model does not seem to have understood my line, “let’s take this very blog post and see what GPT-3 would like to say.” That is, rather than trying to “say” anything, it attempted to continue the blog post in the way I might have continued it without the block quote.

Truth vs Probability of Text

If we interpret the above text from GPT-3 “charitably”, much of it is true or close to true. But I use scare quotes here because when we speak of interpreting human speech charitably, we are assuming that someone was trying to speak the truth, and so we think, “What would they have meant if they were trying to say something true?” The situation is different here, because GPT-3 has no intention of producing truth, nor of avoiding it. Insofar as there is any intention, the intention is to produce the text which would be likely to come after the input text; in this case, as the input text was the beginning of this blog post, the intention was to produce the text that would likely follow in such a post. Note that there is an indirect relationship with truth, which explains why there is any truth at all in GPT-3’s remarks. If the input text is true, it is at least somewhat likely that what would follow would also be true, so if the model is good at guessing what would be likely to follow, it will be likely to produce something true in such cases. But it is just as easy to convince it to produce something false, simply by providing an input text that would be likely to be followed by something false.

This results in an absolute upper limit on the quality of the output of a model of this kind, including any successor version, as long as the model works by predicting the probability of the following text. Namely, its best output cannot be substantially better than the best content in its training data, which is in this version is a large quantity of texts from the internet. The reason for this limitation is clear; to the degree that the model has any intention at all, the intention is to reflect the training data, not to surpass it. As an example, consider the difference between Deep Mind’s AlphaGo and AlphaGo Zero. AlphaGo Zero is a better Go player than the original AlphaGo, and this is largely because the original is trained on human play, while AlphaGo Zero is trained from scratch on self play. In other words, the original version is to some extent predicting “what would a Go player play in this situation,” which is not the same as predicting “what move would win in this situation.”

Now I will predict (and perhaps even GPT-3 could predict) that many people will want to jump in and say, “Great. That shows you are wrong. Even the original AlphaGo plays Go much better than a human. So there is no reason that an advanced version of GPT-3 could not be better than humans at saying things that are true.”

The difference, of course, is that AlphaGo was trained in two ways, first on predicting what move would be likely in a human game, and second on what would be likely to win, based on its experience during self play. If you had trained the model only on predicting what would follow in human games, without the second aspect, the model would not have resulted in play that substantially improved upon human performance. But in the case of GPT-3 or any model trained in the same way, there is no selection whatsoever for truth as such; it is trained only to predict what would follow in a human text. So no successor to GPT-3, in the sense of a model of this particular kind, however large, will ever be able to produce output better than human, or in its own words, “its writing would be just like anyone else’s.”

Self Knowledge and Goals

OpenAI originally claimed that GPT-2 was too dangerous to release; ironically, they now intend to sell access to GPT-3. Nonetheless, many people, in large part those influenced by the opinions of Nick Bostrom and Eliezer Yudkowsky, continue to worry that an advanced version might turn out to be a personal agent with nefarious goals, or at least goals that would conflict with the human good. Thus Alexander Kruel:

GPT-2: *writes poems*
Skeptics: Meh
GPT-3: *writes code for a simple but functioning app*
Skeptics: Gimmick.
GPT-4: *proves simple but novel math theorems*
Skeptics: Interesting but not useful.
GPT-5: *creates GPT-6*
Skeptics: Wait! What?
GPT-6: *FOOM*
Skeptics: *dead*

In a sense the argument is moot, since I have explained above why no future version of GPT will ever be able to produce anything better than people can produce themselves. But even if we ignore that fact, GPT-3 is not a personal agent of any kind, and seeks goals in no meaningful sense, and the same will apply to any future version that works in substantially the same way.

The basic reason for this is that GPT-3 is disembodied, in the sense of this earlier post on Nick Bostrom’s orthogonality thesis. The only thing it “knows” is texts, and the only “experience” it can have is receiving an input text. So it does not know that it exists, it cannot learn that it can affect the world, and consequently it cannot engage in goal seeking behavior.

You might object that it can in fact affect the world, since it is in fact in the world. Its predictions cause an output, and that output is in the world. And that output and be reintroduced as input (which is how “conversations” with GPT-3 are produced). Thus it seems it can experience the results of its own activities, and thus should be able to acquire self knowledge and goals. This objection is not ultimately correct, but it is not so far from the truth. You would not need extremely large modifications in order to make something that in principle could acquire self knowledge and seek goals. The main reason that this cannot happen is the “P in “GPT,” that is, the fact that the model is “pre-trained.” The only learning that can happen is the learning that happens while it is reading an input text, and the purpose of that learning is to guess what is happening in the one specific text, for the purpose of guessing what is coming next in this text. All of this learning vanishes upon finishing the prediction task and receiving another input. A secondary reason is that since the only experience it can have is receiving an input text, even if it were given a longer memory, it would probably not be possible for it to notice that its outputs were caused by its predictions, because it likely has no internal mechanism to reflect on the predictions themselves.

Nonetheless, if you “fixed” these two problems, by allowing it to continue to learn, and by allowing its internal representations to be part of its own input, there is nothing in principle that would prevent it from achieving self knowledge, and from seeking goals. Would this be dangerous? Not very likely. As indicated elsewhere, motivation produced in this way and without the biological history that produced human motivation is not likely to be very intense. In this context, if we are speaking of taking a text-predicting model and adding on an ability to learn and reflect on its predictions, it is likely to enjoy doing those things and not much else. For many this argument will seem “hand-wavy,” and very weak. I could go into this at more depth, but I will not do so at this time, and will simply invite the reader to spend more time thinking about it. Dangerous or not, would it be easy to make these modifications? Nothing in this description sounds difficult, but no, it would not be easy. Actually making an artificial intelligence is hard. But this is a story for another time.

Fire, Water, and Numbers

Fire vs. Water

All things are water,” says Thales.

“All things are fire,” says Heraclitus.

“Wait,” says David Hume’s Philo. “You both agree that all things are made up of one substance. Thales, you prefer to call it water, and Heraclitus, you prefer to call it fire. But isn’t that merely a verbal dispute? According to both of you, whatever you point at is fundamentally the same fundamental stuff. So whether you point at water or fire, or anything else, for that matter, you are always pointing at the same fundamental stuff. Where is the real disagreement?”

Philo has a somewhat valid point here, and I mentioned the same thing in the linked post referring to Thales. Nonetheless, as I also said in the same post, as well as in the discussion of the disagreement about God, while there is some common ground, there are also likely remaining points of disagreement. It might depend on context, and perhaps the disagreement is more about the best way of thinking about things than about the things themselves, somewhat like discussing whether the earth or the universe is the thing spinning, but Heraclitus could respond, for example, by saying that thinking of the fundamental stuff as fire is more valid because fire is constantly changing, while water often appears to be completely still, and (Heraclitus claims) everything is in fact constantly changing. This could represent a real disagreement, but it is not a large one, and Thales could simply respond: “Ok, everything is flowing water. Problem fixed.”

Numbers

It is said that Pythagoras and his followers held that “all things are numbers.” To what degree and in what sense this attribution is accurate is unclear, but in any case, some people hold this very position today, even if they would not call themselves Pythagoreans. Thus for example in a recent episode of Sean Carroll’s podcast, Carroll speaks with Max Tegmark, who seems to adopt this position:

0:23:37 MT: It’s squishy a little bit blue and moose like. [laughter] Those properties, I just described don’t sound very mathematical at all. But when we look at it, Sean through our physics eyes, we see that it’s actually a blob of quarks and electrons. And what properties does an electron have? It has the property, minus one, one half, one, and so on. We, physicists have made up these nerdy names for these properties like electric charge, spin, lepton number. But it’s just we humans who invented that language of calling them that, they are really just numbers. And you know as well as I do that the only difference between an electron and a top quark is what numbers its properties are. We have not discovered any other properties that they actually have. So that’s the stuff in space, all the different particles, in the Standard Model, you’ve written so much nice stuff about in your books are all described by just by sets of numbers. What about the space that they’re in? What property does the space have? I think I actually have your old nerdy non-popular, right?

0:24:50 SC: My unpopular book, yes.

0:24:52 MT: Space has, for example, the property three, that’s a number and we have a nerdy name for that too. We call it the dimensionality of space. It’s the maximum number of fingers I can put in space that are all perpendicular to each other. The name dimensionality is just the human language thing, the property is three. We also discovered that it has some other properties, like curvature and topology that Einstein was interested in. But those are all mathematical properties too. And as far as we know today in physics, we have never discovered any properties of either space or the stuff in space yet that are actually non-mathematical. And then it starts to feel a little bit less insane that maybe we are living in a mathematical object. It’s not so different from if you were a character living in a video game. And you started to analyze how your world worked. You would secretly be discovering just the mathematical workings of the code, right?

Tegmark presumably would believe that by saying that things “are really just numbers,” he would disagree with Thales and Heraclitus about the nature of things. But does he? Philo might well be skeptical that there is any meaningful disagreement here, just as between Thales and Heraclitus. As soon as you begin to say, “all things are this particular kind of thing,” the same issues will arise to hinder your disagreement with others who characterize things in a different way.

The discussion might be clearer if I put my cards on the table in advance:

First, there is some validity to the objection, just as there is to the objection concerning the difference between Thales and Heraclitus.

Second, there is nonetheless some residual disagreement, and on that basis it turns out that Tegmark and Pythagoras are more correct than Thales and Heraclitus.

Third, Tegmark most likely does not understand the sense in which he might be correct, rather supposing himself correct the way Thales might suppose himself correct in insisting, “No, things are really not fire, they are really water.”

Mathematical and non-mathematical properties

As an approach to these issues, consider the statement by Tegmark, “We have never discovered any properties of either space or the stuff in space yet that are actually non-mathematical.”

What would it look like if we found a property that was “actually non-mathematical?” Well, what about the property of being blue? As Tegmark remarks, that does not sound very mathematical. But it turns out that color is a certain property of a surface regarding how it reflects flight, and this is much more of a “mathematical” property, at least in the sense that we can give it a mathematical description, which we would have a hard time doing if we simply took the word “blue.”

So presumably we would find a non-mathematical property by seeing some property of things, then investigating it, and then concluding, “We have fully investigated this property and there is no mathematical description of it.” This did not happen with the color blue, nor has it yet happened with any other property; either we can say that we have not yet fully investigated it, or we can give some sort of mathematical description.

Tegmark appears to take the above situation to be surprising. Wow, we might have found reality to be non-mathematical, but it actually turns out to be entirely mathematical! I suggest something different. As hinted by connection with the linked post, things could not have turned out differently. A sufficiently detailed analysis of anything will be a mathematical analysis or something very like it. But this is not because things “are actually just numbers,” as though this were some deep discovery about the essence of things, but because of what it is for people to engage in “a detailed analysis” of anything.

Suppose you want to investigate some thing or some property. The first thing you need to do is to distinguish it from other things or other properties. The color blue is not the color red, the color yellow, or the color green.

Numbers are involved right here at the very first step. There are at least three colors, namely red, yellow, and blue.

Of course we can find more colors, but what if it turns out there seems to be no definite number of them, but we can always find more? Even in this situation, in order to “analyze” them, we need some way of distinguishing and comparing them. We will put them in some sort of order: one color is brighter than another, or one length is greater than another, or one sound is higher pitched than another.

As soon as you find some ordering of that sort (brightness, or greatness of length, or pitch), it will become possible to give a mathematical analysis in terms of the real numbers, as we discussed in relation to “good” and “better.” Now someone defending Tegmark might respond: there was no guarantee we would find any such measure or any such method to compare them. Without such a measure, you could perhaps count your property along with other properties. But you could not give a mathematical analysis of the property itself. So it is surprising that it turned out this way.

But you distinguished your property from other properties, and that must have involved recognizing some things in common with other properties, at least that it was something rather than nothing and that it was a property, and some ways in which it was different from other properties. Thus for example blue, like red, can be seen, while a musical note can be heard but not seen (at least by most people.) Red and blue have in common that they are colors. But what is the difference between them? If we are to respond in any way to this question, except perhaps, “it looks different,” we must find some comparison. And if we find a comparison, we are well on the way to a mathematical account. If we don’t find a comparison, people might rightly complain that we have not yet done any detailed investigation.

But to make the point stronger, let’s assume the best we can do is “it looks different.” Even if this is the case, this very thing will allow us to construct a comparison that will ultimately allow us to construct a mathematical measure. For “it looks different” is itself something that comes in degrees. Blue looks different from red, but orange does so as well, just less different. Insofar as this judgment is somewhat subjective, it might be hard to get a great deal of accuracy with this method. But it would indeed begin to supply us with a kind of sliding scale of colors, and we would be able to number this scale with the real numbers.

From a historical point of view, it took a while for people to realize that this would always be possible. Thus for example Isidore of Seville said that “unless sounds are held by the memory of man, they perish, because they cannot be written down.” It was not, however, so much ignorance of sound that caused this, as ignorance of “detailed analysis.”

This is closely connected to what we said about names. A mathematical analysis is a detailed system of naming, where we name not only individual items, but also various groups, using names like “two,” “three,” and “four.” If we find that we cannot simply count the thing, but we can always find more examples, we look for comparative ways to name them. And when we find a comparison, we note that some things are more distant from one end of the scale and other things are less distant. This allows us to analyze the property using real numbers or some similar mathematical concept. This is also related to our discussion of technical terminology; in an advanced stage any science will begin to use somewhat mathematical methods. Unfortunately, this can also result in people adopting mathematical language in order to look like their understanding has reached an advanced stage, when it has not.

It should be sufficiently clear from this why I suggested that things could not have turned out otherwise. A “non-mathematical” property, in Tegmark’s sense, can only be a property you haven’t analyzed, or one that you haven’t succeeded in analyzing if you did attempt it.

The three consequences

Above, I made three claims about Tegmark’s position. The reasons for them may already be somewhat clarified by the above, but nonetheless I will look at this in a bit more detail.

First, I said there was some truth in the objection that “everything is numbers” is not much different from “everything is water,” or “everything is fire.” One notices some “hand-waving,” so to speak, in Tegmark’s claim that “We, physicists have made up these nerdy names for these properties like electric charge, spin, lepton number. But it’s just we humans who invented that language of calling them that, they are really just numbers.” A measure of charge or spin or whatever may be a number. But who is to say the thing being measured is a number? Nonetheless, there is a reasonable point there. If you are to give an account at all, it will in some way express the form of the thing, which implies explaining relationships, which depends on the distinction of various related things, which entails the possibility of counting the things that are related. In other words, someone could say, “You have a mathematical account of a thing. But the thing itself is non-mathematical.” But if you then ask them to explain that non-mathematical thing, the new explanation will be just as mathematical as the original explanation.

Given this fact, namely that the “mathematical” aspect is a question of how detailed explanations work, what is the difference between saying “we can give a mathematical explanation, but apart from explanations, the things are numbers,” and “we can give a mathematical explanation, but apart from explanations, the things are fires?”

Exactly. There isn’t much difference. Nonetheless, I made the second claim that there is some residual disagreement and that by this measure, the mathematical claim is better than the one about fire or water. Of course we don’t really know what Thales or Heraclitus thought in detail. But Aristotle, at any rate, claimed that Thales intended to assert that material causes alone exist. And this would be at least a reasonable understanding of the claim that all things are water, or fire. Just as Heraclitus could say that fire is a better term than water because fire is always changing, Thales, if he really wanted to exclude other causes, could say that water is a better term than “numbers” because water seems to be material and numbers do not. But since other causes do exist, the opposite is the case: the mathematical claim is better than the materialistic ones.

Many people say that Tegmark’s account is flawed in a similar way, but with respect to another cause; that is, that mathematical accounts exclude final causes. But this is a lot like Ed Feser’s claim that a mathematical account of color implies that colors don’t really exist; namely they are like in just being wrong. A mathematical account of color does not imply that things are not colored, and a mathematical account of the world does not imply that final causes do not exist. As I said early on, a final causes explains why an efficient cause does what it does, and there is nothing about a mathematical explanation that prevents you from saying why the efficient cause does what it does.

My third point, that Tegmark does not understand the sense in which he is right, should be plain enough. As I stated above, he takes it to be a somewhat surprising discovery that we consistently find it possible to give mathematical accounts of the world, and this only makes sense if we assume it would in theory have been possible to discover something else. But that could not have happened, not because the world couldn’t have been a certain way, but because of the nature of explanation.

The Power of a Name

Fairy tales and other stories occasionally suggest the idea that a name gives some kind of power over the thing named, or at least that one’s problems concerning a thing may be solved by knowing its name, as in the story of Rumpelstiltskin. There is perhaps a similar suggestion in Revelation 2:7, “Whoever has ears, let them hear what the Spirit says to the churches. To the one who is victorious, I will give some of the hidden manna. I will also give that person a white stone with a new name written on it, known only to the one who receives it.” The secrecy of the new name may indicate (among other things) that others will have no power over that person.

There is more truth in this idea than one might assume without much thought. For example, anonymous authors do not want to be “doxxed” because knowing the name of the author really does give some power in relation to them which is not had without the knowledge of their name. Likewise, as a blogger, occasionally I want to cite something, but cannot remember the name of the author or article where the statement is made. Even if I remember the content fairly clearly, lacking the memory of the name makes finding the content far more difficult, while on the other name, knowing the name gives me the power of finding the content much more easily.

But let us look a bit more deeply into this. Hilary Lawson, whose position was somewhat discussed here, has a discussion along these lines in Part II of his book, Closure: A Story of Everything. Since he denies that language truly refers to the world at all, as I mentioned in the linked post on his position, it is important to him that language has other effects, and in particular has practical goals. He says in chapter 4:

In order to understand the mechanism of practical linguistic closure consider an example where a proficient speaker of English comes across a new word. Suppose that we are visiting a zoo with a friend. We stand outside a cage and our friend says: ‘An aasvogel.” …

It might appear at first from this example that nothing has been added by the realisation of linguistic closure. The sound ‘aasvogel’ still sounds the same, the image of the bird still looks the same. So what has changed? The sensory closures on either side may not have changed, but a new closure has been realised. A new closure which is in addition to the prior available closures and which enables intervention which was not possible previously. For example, we now have a means of picking out this particular bird in the zoo because the meaning that has been realised will have identified a something in virtue of which this bird is an aasvogel and which thus enables us to distinguish it from others. As a result there will be many consequences for how we might be able to intervene.

The important point here is simply that naming something, even before taking any additional steps, immediately gives one the ability to do various practical things that one could not previously do. In a passage by Helen Keller, previously quoted here, she says:

Since I had no power of thought, I did not compare one mental state with another. So I was not conscious of any change or process going on in my brain when my teacher began to instruct me. I merely felt keen delight in obtaining more easily what I wanted by means of the finger motions she taught me.

We may have similar experiences as adults learning a foreign language while living abroad. At first one has very little ability to interact with the foreign world, but suddenly everything is possible.

Or consider the situation of a hunter gatherer who may not know how to count. It may be obvious to them that a bigger pile of fruit is better than a smaller one, but if two piles look similar, they may have no way to know which is better. But once they decide to give “one fruit and another” a name like “two,” and “two and one” a name like “three,” and so on, suddenly they obtain a great advantage that they previously did not possess. It is now possible to count piles and to discover that one pile has sixty-four while another has sixty-three. And it turns out that by treating the “sixty-four” as bigger than the other pile, although it does not look bigger, they end up better off.

In this sense one could look at the scientific enterprise of looking for mathematical laws of nature as one long process of looking for better names. We can see that some things are faster and some things are slower, but the vague names “fast” and “slow” cannot accomplish much. Once we can name different speeds more precisely, we can put them all in order and accomplish much more, just as the hunter gatherer can accomplish more after learning to count. And this extends to the full power of technology: the men who landed on the moon, did so ultimately due to the power of names.

If you take Lawson’s view, that language does not refer to the world at all, all of this is basically casting magic spells. In fact, he spells this out himself, in so many words, in chapter 3:

All material is in this sense magical. It enables intervention that cannot be understood. Ancient magicians were those who had access to closures that others did not know, in the same way that the Pharaohs had access to closures not available to their subjects. This gave them a supernatural character. It is now that thought that their magic has been explained, as the knowledge of herbs, metals or the weather. No such thing has taken place. More powerful closures have been realised, more powerful magic that can subsume the feeble closures of those magicians. We have simply lost sight of its magical character. Anthropology has many accounts of tribes who on being observed by a Western scientist believe that the observer has access to some very powerful magic. Magic that produces sound and images from boxes, and makes travel swift. We are inclined to smile patronisingly believing that we merely have knowledge — the technology behind radio and television, and motor vehicles — and not magic. The closures behind the technology do indeed provide us with knowledge and understanding and enable us to handle activity, but they do not explain how the closures enable intervention. How the closures are successful remains incomprehensible and in this sense is our magic.

I don’t think we should dismiss this point of view entirely, but I do think it is more mistaken than otherwise, basically because of the original mistake of thinking that language cannot refer to the world. But the point that names are extremely powerful is correct and important, to the point where even the analogy of technology as “magic that works” does make a certain amount of sense.

Mind of God

Reconciling Theism and Atheism

In his Dialogues Concerning Natural Religion, David Hume presents Philo as arguing that the disagreement between theists and atheists is merely verbal:

All men of sound reason are disgusted with verbal disputes, which abound so much in philosophical and theological inquiries; and it is found, that the only remedy for this abuse must arise from clear definitions, from the precision of those ideas which enter into any argument, and from the strict and uniform use of those terms which are employed. But there is a species of controversy, which, from the very nature of language and of human ideas, is involved in perpetual ambiguity, and can never, by any precaution or any definitions, be able to reach a reasonable certainty or precision. These are the controversies concerning the degrees of any quality or circumstance. Men may argue to all eternity, whether HANNIBAL be a great, or a very great, or a superlatively great man, what degree of beauty CLEOPATRA possessed, what epithet of praise LIVY or THUCYDIDES is entitled to, without bringing the controversy to any determination. The disputants may here agree in their sense, and differ in the terms, or vice versa; yet never be able to define their terms, so as to enter into each other’s meaning: Because the degrees of these qualities are not, like quantity or number, susceptible of any exact mensuration, which may be the standard in the controversy. That the dispute concerning Theism is of this nature, and consequently is merely verbal, or perhaps, if possible, still more incurably ambiguous, will appear upon the slightest inquiry. I ask the Theist, if he does not allow, that there is a great and immeasurable, because incomprehensible difference between the human and the divine mind: The more pious he is, the more readily will he assent to the affirmative, and the more will he be disposed to magnify the difference: He will even assert, that the difference is of a nature which cannot be too much magnified. I next turn to the Atheist, who, I assert, is only nominally so, and can never possibly be in earnest; and I ask him, whether, from the coherence and apparent sympathy in all the parts of this world, there be not a certain degree of analogy among all the operations of Nature, in every situation and in every age; whether the rotting of a turnip, the generation of an animal, and the structure of human thought, be not energies that probably bear some remote analogy to each other: It is impossible he can deny it: He will readily acknowledge it. Having obtained this concession, I push him still further in his retreat; and I ask him, if it be not probable, that the principle which first arranged, and still maintains order in this universe, bears not also some remote inconceivable analogy to the other operations of nature, and, among the rest, to the economy of human mind and thought. However reluctant, he must give his assent. Where then, cry I to both these antagonists, is the subject of your dispute? The Theist allows, that the original intelligence is very different from human reason: The Atheist allows, that the original principle of order bears some remote analogy to it. Will you quarrel, Gentlemen, about the degrees, and enter into a controversy, which admits not of any precise meaning, nor consequently of any determination? If you should be so obstinate, I should not be surprised to find you insensibly change sides; while the Theist, on the one hand, exaggerates the dissimilarity between the Supreme Being, and frail, imperfect, variable, fleeting, and mortal creatures; and the Atheist, on the other, magnifies the analogy among all the operations of Nature, in every period, every situation, and every position. Consider then, where the real point of controversy lies; and if you cannot lay aside your disputes, endeavour, at least, to cure yourselves of your animosity.

To what extent Hume actually agrees with this argument is not clear, and whether or not a dispute is verbal or real is itself like Hume’s questions about greatness or beauty, that is, it is a matter of degree. Few disagreements are entirely verbal. In any case, I largely agree with the claim that there is little real disagreement here. In response to a question on the about page of this blog, I referred to some remarks about God by Roderick Long:

Since my blog has wandered into theological territory lately, I thought it might be worth saying something about the existence of God.

When I’m asked whether I believe in God, I usually don’t know what to say – not because I’m unsure of my view, but because I’m unsure how to describe my view. But here’s a try.

I think the disagreement between theism and atheism is in a certain sense illusory – that when one tries to sort out precisely what theists are committed to and precisely what atheists are committed to, the two positions come to essentially the same thing, and their respective proponents have been fighting over two sides of the same shield.

Let’s start with the atheist. Is there any sense in which even the atheist is committed to recognising the existence of some sort of supreme, eternal, non-material reality that transcends and underlies everything else? Yes, there is: namely, the logical structure of reality itself.

Thus so long as the theist means no more than this by “God,” the theist and the atheist don’t really disagree.

Now the theist may think that by God she means something more than this. But likewise, before people knew that whales were mammals they thought that by “whale” they meant a kind of fish. What is the theist actually committed to meaning?

Well, suppose that God is not the logical structure of the universe. Then we may ask: in what relation does God stand to that structure, if not identity? There would seem to be two possibilities.

One is that God stands outside that structure, as its creator. But this “possibility” is unintelligible. Logic is a necessary condition of significant discourse; thus one cannot meaningfully speak of a being unconstrained by logic, or a time when logic’s constraints were not yet in place.

The other is that God stands within that structure, along with everything else. But this option, as Wittgenstein observed, would downgrade God to the status of being merely one object among others, one more fragment of contingency – and he would no longer be the greatest of all beings, since there would be something greater: the logical structure itself. (This may be part of what Plato meant in describing the Form of the Good as “beyond being.”)

The only viable option for the theist, then, is to identify God with the logical structure of reality. (Call this “theological logicism.”) But in that case the disagreement between the theist and the atheist dissolves.

It may be objected that the “reconciliation” I offer really favours the atheist over the theist. After all, what theist could be satisfied with a deity who is merely the logical structure of the universe? Yet in fact there is a venerable tradition of theists who proclaim precisely this. Thomas Aquinas, for example, proposed to solve the age-old questions “could God violate the laws of logic?” and “could God command something immoral?” by identifying God with Being and Goodness personified. Thus God is constrained by the laws of logic and morality, not because he is subject to them as to a higher power, but because they express his own nature, and he could not violate or alter them without ceasing to be God. Aquinas’ solution is, essentially, theological logicism; yet few would accuse Aquinas of having a watered-down or crypto-atheistic conception of deity. Why, then, shouldn’t theological logicism be acceptable to the theist?

A further objection may be raised: Aquinas of course did not stop at the identification of God with Being and Goodness, but went on to attribute to God various attributes not obviously compatible with this identification, such as personality and will. But if the logical structure of reality has personality and will, it will not be acceptable to the atheist; and if it does not have personality and will, then it will not be acceptable to the theist. So doesn’t my reconciliation collapse?

I don’t think so. After all, Aquinas always took care to insist that in attributing these qualities to God we are speaking analogically. God does not literally possess personality and will, at least if by those attributes we mean the same attributes that we humans possess; rather he possesses attributes analogous to ours. The atheist too can grant that the logical structure of reality possesses properties analogous to personality and will. It is only at the literal ascription of those attributes that the atheist must balk. No conflict here.

Yet doesn’t God, as understood by theists, have to create and sustain the universe? Perhaps so. But atheists too can grant that the existence of the universe depends on its logical structure and couldn’t exist for so much as an instant without it. So where’s the disagreement?

But doesn’t God have to be worthy of worship? Sure. But atheists, while they cannot conceive of worshipping a person, are generally much more open to the idea of worshipping a principle. Again theological logicism allows us to transcend the opposition between theists and atheists.

But what about prayer? Is the logical structure of reality something one could sensibly pray to? If so, it might seem, victory goes to the theist; and if not, to the atheist. Yet it depends what counts as prayer. Obviously it makes no sense to petition the logical structure of reality for favours; but this is not the only conception of prayer extant. In Science and Health, for example, theologian M. B. Eddy describes the activity of praying not as petitioning a principle but as applying a principle:

“Who would stand before a blackboard, and pray the principle of mathematics to solve the problem? The rule is already established, and it is our task to work out the solution. Shall we ask the divine Principle of all goodness to do His own work? His work is done, and we have only to avail ourselves of God’s rule in order to receive His blessing, which enables us to work out our own salvation.”

Is this a watered-down or “naturalistic” conception of prayer? It need hardly be so; as the founder of Christian Science, Eddy could scarcely be accused of underestimating the power of prayer! And similar conceptions of prayer are found in many eastern religions. Once again, theological logicism’s theistic credentials are as impeccable as its atheistic credentials.

Another possible objection is that whether identifying God with the logical structure of reality favours the atheist or the theist depends on how metaphysically robust a conception of “logical structure” one appeals to. If one thinks of reality’s logical structure in realist terms, as an independent reality in its own right, then the identification favours the theist; but if one instead thinks, in nominalist terms, that there’s nothing to logical structure over and above what it structures, then the identification favours the atheist.

This argument assumes, however, that the distinction between realism and nominalism is a coherent one. I’ve argued elsewhere (see here and here) that it isn’t; conceptual realism pictures logical structure as something imposed by the world on an inherently structureless mind (and so involves the incoherent notion of a structureless mind), while nominalism pictures logical structure as something imposed by the mind on an inherently structureless world (and so involves the equally incoherent notion of a structureless world). If the realism/antirealism dichotomy represents a false opposition, then the theist/atheist dichotomy does so as well. The difference between the two positions will then be only, as Wittgenstein says in another context, “one of battle cry.”

Long is trying too hard, perhaps. As I stated above, few disagreements are entirely verbal, so it would be strange to find no disagreement at all, and we could question some points here. Are atheists really open to worshiping a principle? Respecting, perhaps, but worshiping? A defender of Long, however, might say that “respect” and “worship” do not necessarily have any relevant difference here, and this is itself a merely verbal difference signifying a cultural difference. The theist uses “worship” to indicate that they belong to a religious culture, while the atheist uses “respect” to indicate that they do not. But it would not be easy to find a distinct difference in the actual meaning of the terms.

In any case, there is no need to prove that there is no difference at all, since without a doubt individual theists will disagree on various matters with individual atheists. The point made by both David Hume and Roderick Long stands at least in a general way: there is far less difference between the positions than people typically assume.

In an earlier post I discussed, among other things, whether the first cause should be called a “mind” or not, discussing St. Thomas’s position that it should be, and Plotinus’s position that it should not be. Along the lines of the argument in this post, perhaps this is really an argument about whether or not you should use a certain analogy, and the correct answer may be that it depends on your purposes.

But what if your purpose is simply to understand reality? Even if it is, it is often the case that you can understand various aspects of reality with various analogies, so this will not necessarily provide you with a definite answer. Still, someone might argue that you should not use a mental analogy with regard to the first cause because it will lead people astray. Thus, in a similar way, Richard Dawkins argued that one should not call the first cause “God” because it would mislead people:

Yes, I said, but it must have been simple and therefore, whatever else we call it, God is not an appropriate name (unless we very explicitly divest it of all the baggage that the word ‘God’ carries in the minds of most religious believers). The first cause that we seek must have been the simple basis for a self-bootstrapping crane which eventually raised the world as we know it into its present complex existence.

I will argue shortly that Dawkins was roughly speaking right about the way that the first cause works, although as I said in that earlier post, he did not have a strong argument for it other than his aesthetic sense and the kinds of explanation that he prefers. In any case, his concern with the name “God” is the “baggage” that it “carries in the minds of most religious believers.” That is, if we say, “There is a first cause, therefore God exists,” believers will assume that their concrete beliefs about God are correct.

In a similar way, someone could reasonably argue that speaking of God as a “mind” would tend to lead people into error by leading them to suppose that God would do the kinds of the things that other minds, namely human ones, do. And this definitely happens. Thus for example, in his book Who Designed the Designer?, Michael Augros argues for the existence of God as a mind, and near the end of the book speculates about divine revelation:

I once heard of a certain philosopher who, on his deathbed, when asked whether he would become a Christian, admitted his belief in Aristotle’s “prime mover”, but not in Jesus Christ as the Son of God. This sort of acknowledgment of the prime mover, of some sort of god, still leaves most of our chief concerns unaddressed. Will X ever see her son again, now that the poor boy has died of cancer at age six? Will miserable and contrite Y ever be forgiven, somehow reconciled to the universe and made whole, after having killed a family while driving drunk? Will Z ever be brought to justice, having lived out his whole life laughing at the law while another person rotted in jail for the atrocities he committed? That there is a prime mover does not tell us with sufficient clarity. Even the existence of an all-powerful, all-knowing, all-good god does not enable us to fill in much detail. And so it seems reasonable to suppose that god has something more to say to us, in explicit words, and not only in the mute signs of creation. Perhaps he is waiting to talk to us, biding his time for the right moment. Perhaps he has already spoken, but we have not recognized his voice.

When we cast our eye about by the light of reason in his way, it seems there is room for faith in general, even if no particular faith can be “proved” true in precisely the same way that it can be “proved” that there is a god.

The idea is that given that God is a mind, it follows that it is fairly plausible that he would wish to speak to people. And perhaps that he would wish to establish justice through extraordinary methods, and that he might wish to raise people from the dead.

I think this is “baggage” carried over from Augros’s personal religious views. It is an anthropomorphic mistake, not merely in the sense that he does not have a good reason for such speculation, but in the sense that such a thing is demonstrably implausible. It is not that the divine motives are necessarily unknown to us, but that we can actually discover them, at least to some extent, and we will discover that they are not what he supposes.

Divine Motives

How might one know the divine motives? How does one read the mind of God?

Anything that acts at all does it what it does ultimately because of what it is. This is an obvious point, like the point that the existence of something rather than nothing could not have some reason outside of being. In a similar way, “what is” is the only possible explanation for what is done, since there is nothing else there to be an explanation. And in every action, whether or not we are speaking of the subject in explicitly mental terms or not, we can always use the analogy of desires and goals. In the linked post, I quote St. Thomas as speaking of the human will as the “rational appetite,” and the natural tendency of other things as a “natural appetite.” If we break down the term “rational appetite,” the meaning is “the tendency to do something, because of having a reason to do it.” And this fits with my discussion of human will in various places, such as in this earlier post.

But where do those reasons come from? I gave an account of this here, arguing that rational goals are a secondary effect of the mind’s attempt to understand itself. Of course human goals are complex and have many factors, but this happens because what the mind is trying to understand is complicated and multifaceted. In particular, there is a large amount of pre-existing human behavior that it needs to understand before it can attribute goals: behavior that results from life as a particular kind of animal, behavior that results from being a particular living thing, and behavior that results from having a body of such and such a sort.

In particular, human social behavior results from these things. There was some discussion of this here, when we looked at Alexander Pruss’s discussion of hypothetical rational sharks.

You might already see where this is going. God as the first cause does not have any of the properties that generate human social behavior, so we cannot expect his behavior to resemble human social behavior in any way, as for example by having any desire to speak with people. Indeed, this is the argument I am making, but let us look at the issue more carefully.

I responded to the “dark room” objection to predictive processing here and here. My response depends both the biological history of humans and animals in general, and to some extent on the history of each individual. But the response does not merely explain why people do not typically enter dark rooms and simply stay there until they die. It also explains why occasionally people do do such things, to a greater or lesser approximation, as with suicidal or extremely depressed people.

If we consider the first cause as a mind, as we are doing here, it is an abstract immaterial mind without any history, without any pre-existing behaviors, without any of the sorts of things that allow people to avoid the dark room. So while people will no doubt be offended by the analogy, and while I will try to give a more pleasant interpretation later, one could argue that God is necessarily subject to his own dark room problem: there is no reason for him to have any motives at all, except the one which is intrinsic to minds, namely the motive of understanding. And so he should not be expected to do anything with the world, except to make sure that it is intelligible, since it must be intelligible for him to understand it.

The thoughtful reader will object: on this account, why does God create the world at all? Surely doing and making nothing at all would be even better, by that standard. So God does seem to have a “dark room” problem that he does manage to avoid, namely the temptation to nothing at all. This is a reasonable objection, but I think it would lead us on a tangent, so I will not address it at this time. I will simply take it for granted that God makes something rather than nothing, and discuss what he does with the world given that fact.

In the previous post, I pointed out that David Hume takes for granted that the world has stable natural laws, and uses that to argue that an orderly world can result from applying those laws to “random” configurations over a long enough time. I said that one might accuse him of “cheating” here, but that would only be the case if he intended to maintain a strictly atheistic position which would say that there is no first cause at all, or that if there is, it does not even have a remote analogy with a mind. Thus his attempted reconciliation of theism and atheism is relevant, since it seems from this that he is aware that such a strict atheism cannot be maintained.

St. Thomas makes a similar connection between God as a mind and a stable order of things in his fifth way:

The fifth way is taken from the governance of the world. We see that things which lack intelligence, such as natural bodies, act for an end, and this is evident from their acting always, or nearly always, in the same way, so as to obtain the best result. Hence it is plain that not fortuitously, but designedly, do they achieve their end. Now whatever lacks intelligence cannot move towards an end, unless it be directed by some being endowed with knowledge and intelligence; as the arrow is shot to its mark by the archer. Therefore some intelligent being exists by whom all natural things are directed to their end; and this being we call God.

What are we are to make of the claim that things act “always, or nearly always, in the same way, so as to obtain the best result?” Certainly acting in the same way would be likely to lead to similar results. But why would you think it was the best result?

If we consider where we get the idea of desire and good, the answer will be clear. We don’t have an idea of good which is completely independent from “what actually tends to happen”, even though this is not quite a definition of the term either. So ultimately St. Thomas’s argument here is based on the fact that things act in similar ways and achieve similar results. The idea that it is “best” is not an additional contribution.

But now consider the alternative. Suppose that things did not act in similar ways, or that doing so did not lead to similar results. We would live in David Hume’s non-inductive world. The result is likely to be mathematically and logically impossible. If someone says, “look, the world works in a coherent way,” and then attempts to describe how it would look if it worked in an incoherent way, they will discover that the latter “possibility” cannot be described. Any description must be coherent in order to be a description, so the incoherent “option” was never a real option in the first place.

This argument might suggest that the position of Plotinus, that mind should not be attributed to God at all, is the more reasonable one. But since we are exploring the situation where we do make that attribution, let us consider the consequences.

We argued above that the sole divine motive for the world is intelligibility. This requires coherence and consistency. It also requires a tendency towards the good, for the above mentioned reasons. Having a coherent tendency at all is ultimately not something different from tending towards good.

The world described is arguably a deist world, one in which the laws of nature are consistently followed, but God does nothing else in the world. The Enlightenment deists presumably had various reasons for their position: criticism of specific religious doctrines, doubts about miracles, and an aesthetic attraction to a perfectly consistent world. But like Dawkins with his argument about God’s simplicity, they do not seem (to me at least) to have had very strong arguments. That does not prove that their position was wrong, and even their weaker arguments may have had some relationship with the truth; even an aesthetic attraction to a perfectly consistent world has some connection with intelligibility, which is the actual reason for the world to be that way.

Once again, as with the objection about creating a world at all, a careful reader might object that this argument is not conclusive. If you have a first cause at all, then it seems that you must have one or more first effects, and even if those effects are simple, they cannot be infinitely simple. And given that they are not infinitely simple, who is to set the threshold? What is to prevent one or more of those effects from being “miraculous” relative to anything else, or even from being something like a voice giving someone a divine revelation?

There is something to this argument, but as with the previous objection, I will not be giving my response here. I will simply note for the moment that it is a little bit strained to suggest that such a thing could happen without God having an explicit motive of “talking to people,” and as argued above, such a motive cannot exist in God. That said, I will go on to some other issues.

As the Heavens are Higher

Apart from my arguments, it has long been noticed in the actual world that God seems much more interested in acting consistently than in bringing about any specific results in human affairs.

Someone like Richard Dawkins, or perhaps Job, if he had taken the counsel of his wife, might respond to the situation in the following way. “God” is not an appropriate name for a first cause that acts like this. If anything is more important to God than being personal, it would be being good. But the God described here is not good at all, since he doesn’t seem to care a bit about human affairs. And he inflicts horrible suffering on people just for the sake of consistency with physical laws. Instead of calling such a cause “God,” why don’t we call it “the Evil Demon” or something like that?

There is a lot that could be said about this. Some of it I have already said elsewhere. Some of it I will perhaps say at other times. For now I will make three brief points.

First, ensuring that the world is intelligible and that it behaves consistently is no small thing. In fact it is a prerequisite for any good thing that might happen anywhere and any time. We would not even arrive at the idea of “good” things if we did not strive consistently for similar results, nor would we get the idea of “striving” if we did did not often obtain them. Thus it is not really true that God has no interest in human affairs: rather, he is concerned with the affairs of all things, including humans.

Second, along similar lines, consider what the supposed alternative would be. If God were “good” in the way you wish, his behavior would be ultimately unintelligible. This is not merely because some physical law might not be followed if there were a miracle. It would be unintelligible behavior in the strict sense, that is, in the sense that no explanation could be given for why God is doing this. The ordinary proposal would be that it is because “this is good,” but when this statement is a human judgement made according to human motives, there would need to be an explanation for why a human judgement is guiding divine behavior. “God is a mind” does not adequately explain this. And it is not clear that an ultimately unintelligible world is a good one.

Third, to extend the point about God’s concern with all things, I suggest that the answer is roughly speaking the one that Scott Alexander gives non-seriously here, except taken seriously. This answer depends on an assumption of some sort of modal realism, a topic which I was slowly approaching for some time, but which merits a far more detailed discussion, and I am not sure when I will get around to it, if ever. The reader might note however that this answer probably resolves the question about “why didn’t God do nothing at all” by claiming that this was never an option anyway.

Anticipations of Darwin

I noted here that long before Darwin, there was fairly decent evidence for some sort of theory of evolution, even evidence available from the general human experience of plant and animal life, without deep scientific study.

As said in the earlier post, Aristotle notes that Empedocles hypothesized something along the lines of natural selection:

Wherever then all the parts came about just what they would have been if they had come to be for an end, such things survived, being organized spontaneously in a fitting way; whereas those which grew otherwise perished and continue to perish, as Empedocles says his ‘man-faced ox-progeny’ did.

Since Aristotle is arguing against Empedocles, we should be cautious in assuming that the characterization of his position is entirely accurate. But as presented by Aristotle, the position is an argument against the existence of final causes: since things can be “organized spontaneously” in the way “they would have been if they had come to be for an end,” there is no reason to think they in fact came to be for an end.

This particular conclusion, namely that in such a process nothing comes to be for an end, is a mistake, based on the assumption that different kinds of causes are mutually exclusive, rather than recognizing that different kinds of causes are different ways of explaining one and the same thing. But the general idea regarding what happened historically is correct: good conditions are more capable of persisting, bad conditions less so, and thus over time good conditions tend to predominate.

Other interesting anticipations may be found in Ibn Khaldun‘s book, The Muqaddimah, published in 1377. For example we find this passage:

It should be known that we — may God guide you and us — notice that this world with all the created things in it has a certain order and solid construction. It shows nexuses between causes and things caused, combinations of some parts of creation with others, and transformations of some existent things into others, in a pattern that is both remarkable and endless. Beginning with the world of the body and sensual perception, and therein first with the world of the visible elements, (one notices) how these elements are arranged gradually and continually in an ascending order, from earth to water, (from water) to air, and (from air) to fire. Each one of the elements is prepared to be transformed into the next higher or lower one, and sometimes is transformed. The higher one is always finer than the one preceding it. Eventually, the world of the spheres is reached. They are finer than anything else. They are in layers which are inter­connected, in a shape which the senses are able to perceive only through the existence of motions. These motions provide some people with knowledge of the measurements and positions of the spheres, and also with knowledge of the existence of the essences beyond, the influence of which is noticeable in the spheres through the fact (that they have motion).

One should then look at the world of creation. It started out from the minerals and progressed, in an ingenious, gradual manner, to plants and animals. The last stage of minerals is connected with the first stage of plants, such as herbs and seedless plants. The last stage of plants, such as palms and vines, is connected with the first stage of animals, such as snails and shellfish which have only the power of touch. The word “connection” with regard to these created things means that the last stage of each group is fully prepared to become the first stage of the next group.

The animal world then widens, its species become numerous, and, in a gradual process of creation, it finally leads to man, who is able to think and to reflect. The higher stage of man is reached from the world of the monkeys, in which both sagacity and perception are found, but which has not reached the stage of actual reflection and thinking. At this point we come to the first stage of man after (the world of monkeys). This is as far as our (physical) observation extends.

It is possible that he makes his position clearer elsewhere (I have not read the entire work.) The passage here does not explicitly assert that humans arose from lower animals, but does suggest it, correctly associating human beings with monkeys in particular, even if some of his other connections are somewhat strange. In other words, both here and elsewhere, he speaks of one stage of things being “prepared to become” another stage, and says that this transition sometimes happens: “Each one of the elements is prepared to be transformed into the next higher or lower one, and sometimes is transformed.”

While Ibn Khaldun is at least suggesting that we notice a biological order that corresponds to some degree to an actual historical order, we do not see in this text any indication of what the mechanism is supposed to be. In contrast, Empedocles gives us a mechanism but no clarity regarding historical order. Admittedly, this may be an artifact of the fact that I have not read more of Ibn Khaldun and the fact that we have only fragments from Empedocles.

One of the strongest anticipations of all, although put in very general terms, can be found in David Hume’s Dialogues Concerning Natural Religion, in the following passage:

Besides, why may not motion have been propagated by impulse through all eternity, and the same stock of it, or nearly the same, be still upheld in the universe? As much is lost by the composition of motion, as much is gained by its resolution. And whatever the causes are, the fact is certain, that matter is, and always has been, in continual agitation, as far as human experience or tradition reaches. There is not probably, at present, in the whole universe, one particle of matter at absolute rest.

And this very consideration too, continued PHILO, which we have stumbled on in the course of the argument, suggests a new hypothesis of cosmogony, that is not absolutely absurd and improbable. Is there a system, an order, an economy of things, by which matter can preserve that perpetual agitation which seems essential to it, and yet maintain a constancy in the forms which it produces? There certainly is such an economy; for this is actually the case with the present world. The continual motion of matter, therefore, in less than infinite transpositions, must produce this economy or order; and by its very nature, that order, when once established, supports itself, for many ages, if not to eternity. But wherever matter is so poised, arranged, and adjusted, as to continue in perpetual motion, and yet preserve a constancy in the forms, its situation must, of necessity, have all the same appearance of art and contrivance which we observe at present. All the parts of each form must have a relation to each other, and to the whole; and the whole itself must have a relation to the other parts of the universe; to the element in which the form subsists; to the materials with which it repairs its waste and decay; and to every other form which is hostile or friendly. A defect in any of these particulars destroys the form; and the matter of which it is composed is again set loose, and is thrown into irregular motions and fermentations, till it unite itself to some other regular form. If no such form be prepared to receive it, and if there be a great quantity of this corrupted matter in the universe, the universe itself is entirely disordered; whether it be the feeble embryo of a world in its first beginnings that is thus destroyed, or the rotten carcass of one languishing in old age and infirmity. In either case, a chaos ensues; till finite, though innumerable revolutions produce at last some forms, whose parts and organs are so adjusted as to support the forms amidst a continued succession of matter.

Suppose (for we shall endeavour to vary the expression), that matter were thrown into any position, by a blind, unguided force; it is evident that this first position must, in all probability, be the most confused and most disorderly imaginable, without any resemblance to those works of human contrivance, which, along with a symmetry of parts, discover an adjustment of means to ends, and a tendency to self-preservation. If the actuating force cease after this operation, matter must remain for ever in disorder, and continue an immense chaos, without any proportion or activity. But suppose that the actuating force, whatever it be, still continues in matter, this first position will immediately give place to a second, which will likewise in all probability be as disorderly as the first, and so on through many successions of changes and revolutions. No particular order or position ever continues a moment unaltered. The original force, still remaining in activity, gives a perpetual restlessness to matter. Every possible situation is produced, and instantly destroyed. If a glimpse or dawn of order appears for a moment, it is instantly hurried away, and confounded, by that never-ceasing force which actuates every part of matter.

Thus the universe goes on for many ages in a continued succession of chaos and disorder. But is it not possible that it may settle at last, so as not to lose its motion and active force (for that we have supposed inherent in it), yet so as to preserve an uniformity of appearance, amidst the continual motion and fluctuation of its parts? This we find to be the case with the universe at present. Every individual is perpetually changing, and every part of every individual; and yet the whole remains, in appearance, the same. May we not hope for such a position, or rather be assured of it, from the eternal revolutions of unguided matter; and may not this account for all the appearing wisdom and contrivance which is in the universe? Let us contemplate the subject a little, and we shall find, that this adjustment, if attained by matter of a seeming stability in the forms, with a real and perpetual revolution or motion of parts, affords a plausible, if not a true solution of the difficulty.

It is in vain, therefore, to insist upon the uses of the parts in animals or vegetables, and their curious adjustment to each other. I would fain know, how an animal could subsist, unless its parts were so adjusted? Do we not find, that it immediately perishes whenever this adjustment ceases, and that its matter corrupting tries some new form? It happens indeed, that the parts of the world are so well adjusted, that some regular form immediately lays claim to this corrupted matter: and if it were not so, could the world subsist? Must it not dissolve as well as the animal, and pass through new positions and situations, till in great, but finite succession, it falls at last into the present or some such order?

Although extremely general, Hume is suggesting both a history and a mechanism. Hume posits conservation of motion or other similar laws of nature, presumably mathematical, and describes what will happen when you apply such laws to a world. Most situations are unstable, and precisely because they are unstable, they will not last, and other situations will come to be. But some situations are stable, and when such situations occur, they will last.

The need for conservation of motion or similar natural laws is not accidental here. This is why I included the first paragraph above, rather than beginning the quotation where Hume begins to describe his “new hypothesis of cosmogony.” Without motion, the situation could not change, so a new situation could not come to be, and the very ideas of stable and unstable situations would not make sense. Likewise, if motion existed but did not follow any law, all situations should be unstable, so no amount of change could lead to a stable situation. Thus since things always fall downwards instead of in random directions, things stabilize near a center, while merely random motion could not be expected to have this effect. Thus a critic might argue that Hume seems to be positing randomness as the origin of things, but is cheating, so to speak, by positing original stabilities like natural laws, which are not random at all. Whatever might be said of this, it is an important point, and I will be returning to it later.

Since his description is more general than a description of living things in particular, Hume does not mention anything like the theory of the common descent of living things. But there is no huge gulf here: this would simply be a particular application. In fact, some people have suggested that Hume may have had textual influence on Darwin.

While there are other anticipations (there is one in Immanuel Kant that I am not currently inclined to seek out), I will skip to Philip Gosse, who published two years before Darwin. As described in the linked post, while Gosse denies the historicity of evolution in a temporal sense, he posits that the geological evidence was deliberately constructed (by God) to be evidence of common descent.

What was Darwin’s own role, then, if all the elements of his theory were known to various people years, centuries, or even millennia in advance? If we look at this in terms of Thomas Kuhn’s account of scientific progress, it is not so much that Darwin invented new ideas, as that he brought the evidence and arguments together in such a way as to produce — extremely quickly after the publication of his work — a newly formed consensus on those ideas.

Infinity

I discussed this topic previously, but without coming to a definite conclusion. Here I will give what I think is the correct explanation.

In his book Infinity, Causation, and Paradox, Alexander Pruss argues for what he calls “causal finitism,” or the principle that nothing can be affected by infinitely many causes:

In this volume, I will present a number of paradoxes of infinity, some old like Thomson’s Lamp and some new, and offer a unified metaphysical response to all of them by means of the hypothesis of causal finitism, which roughly says that nothing can be affected by infinitely many causes. In particular, Thomson’s Lamp story is ruled out since the final state of the lamp would be affected by infinitely many switch togglings. And in addition to arguing for the hypothesis as the best unified resolution to the paradoxes I shall offer some direct arguments against infinite regresses.

Thomson’s Lamp, if the reader is not familiar with it, is the question of what happens to a lamp if you switch it on and off an infinite number of times in a finite interval, doubling your velocity after each switch. At the end of the interval, is it on or off?

I think Pruss’s account is roughly speaking correct. I say “roughly speaking” because I would be hesitant to claim that nothing can be “affected” by infinitely many causes. Rather I would say that nothing is one effect simultaneously of infinitely many causes, and this is true for the same reason that there cannot be an infinite causal regress. That is, an infinite causal regress removes the notion of cause by removing the possibility of explanation, which is an intrinsic part of the idea of a cause. Similarly, it is impossible to explain anything using an infinite number of causes, because that infinity as such cannot be comprehended, and thus cannot be used to understand the thing which is the supposed effect. And since the infinity cannot explain the thing, neither can it be the cause of the thing.

What does this imply about the sorts of questions that were raised in my previous discussion, as for example about an infinite past or an infinite future, or a spatially infinite universe?

I presented an argument there, without necessarily claiming it to be correct, that such things are impossible precisely because they seem to imply an infinite causal regress. If there an infinite number of stars in the universe, for example, there seems to be an infinite regress of material causes: the universe seems to be composed of this local portion plus the rest, with the rest composed in a similar way, ad infinitum.

Unfortunately, there is an error in this argument against a spatially infinite world, and in similar arguments against a temporally infinite world, whether past or future. This can be seen in my response to Bertrand Russell when I discuss the material causes of water. Even if it is possible to break every portion of water down into smaller portions, it does not follow that this is an infinite sequence of material causes, or that it helps to explain water. In a similar way, even if the universe can be broken down into an infinite number of pieces in the above way, it does not follow that the universe has an infinite number of material causes: rather, this breakdown fails to explain, and fails to give causes at all.

St. Thomas gives a different argument against an infinite multitude, roughly speaking that it would lack a formal cause:

This, however, is impossible; since every kind of multitude must belong to a species of multitude. Now the species of multitude are to be reckoned by the species of numbers. But no species of number is infinite; for every number is multitude measured by one. Hence it is impossible for there to be an actually infinite multitude, either absolute or accidental.

By this argument, it would be impossible for there to be “an infinite number of stars” because the collection would lack “a species of multitude.” Unfortunately there is a problem with this argument as well, namely that it presupposes that the number is inherently fixed before it is considered by human beings. In reality, counting depends on someone who counts and a method they use for counting; to talk about the “number of stars” is a choice to break down the world in that particular way. There are other ways to think of it, as for example when we use the word “universe”, we count everything at once as a unit.

According to my account here, are some sorts of infinity actually impossible? Yes, namely those which demand an infinite sequence of explanation, or which demand an infinite number of things in order to explain something. Thus for example consider this story from Pruss about shuffling an infinite deck of cards:

Suppose I have an infinitely deep deck of cards, numbered with the positive integers. Can I shuffle it?

Given an infinite past, here is a procedure: n days ago, I perfectly fairly shuffle the top n cards in the deck.

This procedure is impossible because it makes the current state of the deck the direct effect of what I did n days ago, for all n. And the effect is a paradox: it is mathematically impossible for the integers to be randomly shuffled, because any series of integers will be biased towards lower numbers. Note that the existence of an infinite past is not the problem so much as assuming that one could have carried out such a procedure during an infinite past; in reality, if there was an infinite past, its contents are equally “infinite,” that is, they do not have such a definable, definite, “finite” relationship with the present.

Counterfactuals and Causality

People have frequently noted some connection between counterfactuals and causation. While it seems backwards to suggest that causation should be defined in terms of counterfactuals, it is reasonable to connect the two concepts, and explains why some counterfactuals are more reasonable than others, as we noted in the last post.

For example, “If I dropped this cup, it would fall to the floor,” is more reasonable than “If I dropped this cup, it would fly up to the moon,” because we are considering the operation of causes like gravity which could cause falling to the floor, and which could not cause (merely by dropping) an object to fly to the moon. In particular, since causes eliminate alternatives, they give us a reason to say “this would have happened rather than that.”

Nonetheless, we cannot get any sort of absolute determination out of this. One would attempt to get a determinate outcome by specifying the counterfactual as clearly as possible: “If I dropped this cup, and everything else was the same.” The “nearest possible world” idea is trying to get at this. However, this is not in fact completely determinate because “everything else” can’t be entirely the same, and what else needs to change is not determinate. In order to drop the cup, there would need to be a course of events that led up to the dropping, and there are many different courses that could have done that. The same thing will happen if you to specify exactly what led to the dropping of the cup; there will need to be something that led to your specification. Thus, at the very least, you will not typically be able to get absolute determination in this way.

Naturally, there is nothing to prevent us from coming up particular examples where we can get complete determination by using something which is always true anyway, or by using logical implication from the counterfactual, e.g. “If I dropped this cup, 2 and 2 would still be 4,” or “If I dropped the cup, it would have been dropped.” But these are not typical cases.

Counterfactuals as Historical Fiction

Suppose someone reading Anne of Green Gables asks a question about what happened before the story begins. For example, what did Anne have for lunch 37 days before her arrival in Avonlea?

It is easy to see that this question does not have one true answer. There is no such thing as what she really had for lunch, because it is a story, and that meal is not included in it. On the other hand, despite the lack of any absolute truth here, some answers remain more reasonable than others. For example, “She had salad,” is a more sensible answer than “she ate crushed glass that day.” Just as I said in regard to “why” something is the case, one can give a partial answer, in the sense of showing that some options are more intelligible than others, without being able to exclude some options entirely.

These same things will apply to questions about a work of historical fiction, although the intended historical context will provide additional ways to show that some answers are more sensible than others. Thus if a story is set in ancient Rome, the claim that someone had corn for lunch is unreasonable due to the historical context, although not as unreasonable as some other possibilities that you could suggest.

Now consider a counterfactual question about your current situation: “What would you do if it were 120 degrees Fahrenheit in your house?”

There is no fundamental difference between this and the case of historical fiction. In effect, we just created a story about you: “It was 120 degrees in your house. You…”

Like the case of historical fiction, some answers will be more sensible than others, but there is no thing that you really would do in that situation. The story didn’t really take place, but if it did, it would have taken place with a lot more concrete detail, and that concrete detail could determine the specific answer to the question. If Anne of Green Gables were a true story, her concrete situation would have determined what she had for lunch that day. And if it were really 120 degrees in your house, what you would do would depend on how and why things got that way, as well as other factors in your concrete situation.

Some philosophers have spent a lot of time on this kind of counterfactual question, apparently largely from a desire for absolute answers. For example, some suggest that a counterfactual is true if the claim is true in the nearest possible world where the antecedent is true. In a similar way, Molinists argue that in order to be omniscient, God has to know what you would do if it were 120 degrees in your house, and that it must be one specific thing, so that there is one thing that you really would do in that situation. They call this kind of knowledge “middle” knowledge, namely something in between knowledge of what actually is and knowledge of what merely might have been.

All accounts of this kind are wasted effort. The brief account above is sufficient.