Counterfactuals and Causality

People have frequently noted some connection between counterfactuals and causation. While it seems backwards to suggest that causation should be defined in terms of counterfactuals, it is reasonable to connect the two concepts, and explains why some counterfactuals are more reasonable than others, as we noted in the last post.

For example, “If I dropped this cup, it would fall to the floor,” is more reasonable than “If I dropped this cup, it would fly up to the moon,” because we are considering the operation of causes like gravity which could cause falling to the floor, and which could not cause (merely by dropping) an object to fly to the moon. In particular, since causes eliminate alternatives, they give us a reason to say “this would have happened rather than that.”

Nonetheless, we cannot get any sort of absolute determination out of this. One would attempt to get a determinate outcome by specifying the counterfactual as clearly as possible: “If I dropped this cup, and everything else was the same.” The “nearest possible world” idea is trying to get at this. However, this is not in fact completely determinate because “everything else” can’t be entirely the same, and what else needs to change is not determinate. In order to drop the cup, there would need to be a course of events that led up to the dropping, and there are many different courses that could have done that. The same thing will happen if you to specify exactly what led to the dropping of the cup; there will need to be something that led to your specification. Thus, at the very least, you will not typically be able to get absolute determination in this way.

Naturally, there is nothing to prevent us from coming up particular examples where we can get complete determination by using something which is always true anyway, or by using logical implication from the counterfactual, e.g. “If I dropped this cup, 2 and 2 would still be 4,” or “If I dropped the cup, it would have been dropped.” But these are not typical cases.

Counterfactuals as Historical Fiction

Suppose someone reading Anne of Green Gables asks a question about what happened before the story begins. For example, what did Anne have for lunch 37 days before her arrival in Avonlea?

It is easy to see that this question does not have one true answer. There is no such thing as what she really had for lunch, because it is a story, and that meal is not included in it. On the other hand, despite the lack of any absolute truth here, some answers remain more reasonable than others. For example, “She had salad,” is a more sensible answer than “she ate crushed glass that day.” Just as I said in regard to “why” something is the case, one can give a partial answer, in the sense of showing that some options are more intelligible than others, without being able to exclude some options entirely.

These same things will apply to questions about a work of historical fiction, although the intended historical context will provide additional ways to show that some answers are more sensible than others. Thus if a story is set in ancient Rome, the claim that someone had corn for lunch is unreasonable due to the historical context, although not as unreasonable as some other possibilities that you could suggest.

Now consider a counterfactual question about your current situation: “What would you do if it were 120 degrees Fahrenheit in your house?”

There is no fundamental difference between this and the case of historical fiction. In effect, we just created a story about you: “It was 120 degrees in your house. You…”

Like the case of historical fiction, some answers will be more sensible than others, but there is no thing that you really would do in that situation. The story didn’t really take place, but if it did, it would have taken place with a lot more concrete detail, and that concrete detail could determine the specific answer to the question. If Anne of Green Gables were a true story, her concrete situation would have determined what she had for lunch that day. And if it were really 120 degrees in your house, what you would do would depend on how and why things got that way, as well as other factors in your concrete situation.

Some philosophers have spent a lot of time on this kind of counterfactual question, apparently largely from a desire for absolute answers. For example, some suggest that a counterfactual is true if the claim is true in the nearest possible world where the antecedent is true. In a similar way, Molinists argue that in order to be omniscient, God has to know what you would do if it were 120 degrees in your house, and that it must be one specific thing, so that there is one thing that you really would do in that situation. They call this kind of knowledge “middle” knowledge, namely something in between knowledge of what actually is and knowledge of what merely might have been.

All accounts of this kind are wasted effort. The brief account above is sufficient.

Was Kavanaugh Guilty?

No, I am not going to answer the question. This post will illustrate and argue for a position that I have argued many times in the past, namely that belief is voluntary. The example is merely particularly good for proving the point. I will also be using a framework something like Bryan Caplan’s in his discussion of rational irrationality:

Two forces lie at the heart of economic models of choice: preferences and prices. A consumer’s preferences determine the shape of his demand curve for oranges; the market price he faces determines where along that demand curve he resides. What makes this insight deep is its generality. Economists use it to analyze everything from having babies to robbing banks.

Irrationality is a glaring exception. Recognizing irrationality is typically equated with rejecting economics. A “logic of the irrational” sounds self-contradictory. This chapter’s central message is that this reaction is premature. Economics can handle irrationality the same way it handles everything: preferences and prices. As I have already pointed out:

  • People have preferences over beliefs: A nationalist enjoys the belief that foreign-made products are overpriced junk; a surgeon takes pride in the belief that he operates well while drunk.
  • False beliefs range in material cost from free to enormous: Acting on his beliefs would lead the nationalist to overpay for inferior goods, and the surgeon to destroy his career.

Snapping these two building blocks together leads to a simple model of irrational conviction. If agents care about both material wealth and irrational beliefs, then as the price of casting reason aside rises, agents consume less irrationality. I might like to hold comforting beliefs across the board, but it costs too much. Living in a Pollyanna dreamworld would stop be from coping with my problems, like that dead tree in my backyard that looks like it is going to fall on my house.

Let us assume that people are considering whether to believe that Brett Kavanaugh was guilty of sexual assault. For ease of visualization, let us suppose that they have utility functions defined over the following outcomes:

(A) Believe Kavanaugh was guilty, and turn out to be right

(B) Believe Kavanaugh was guilty, and turn out to be wrong

(C) Believe Kavanaugh was innocent, and turn out to be right

(D) Believe Kavanaugh was innocent, and turn out to be wrong

(E) Admit that you do not know whether he was guilty or not (this will be presumed to be a true statement, but I will count it as less valuable than a true statement that includes more detail.)

(F) Say something bad about your political enemies

(G) Say something good about your political enemies

(H) Say something bad about your political allies

(I) Say something good about your political allies

Note that options A through E are mutually exclusive, while one or more of options F through I might or might not come together with one of those from A through E.

Let’s suppose there are three people, a right winger who cares a lot about politics and little about truth, a left winger who cares a lot about politics and little about truth, and an independent who does not care about politics and instead cares a lot about truth. Then we posit the following table of utilities:

Right Winger
Left Winger
Independent
(A)
10
10
100
(B)
-10
-10
-100
(C)
10
10
100
(D)
-10
-10
-100
(E)
5
5
50
(F)
100
100
0
(G)
-100
-100
0
(H)
-100
-100
0
(I)
100
100
0

The columns for the right and left wingers are the same, but the totals will be calculated differently because saying something good about Kavanaugh, for the right winger, is saying something good about an ally, while for the left winger, it is saying something good about an enemy, and there is a similar contrast if something bad is said.

Now there are really only three options we need to consider, namely “Believe Kavanaugh was guilty,” “Believe Kavanaugh was innocent,” and “Admit that you do not know.” In addition, in order to calculate expected utility according to the above table, we need a probability that Kavanaugh was guilty. In order not to offend readers who have already chosen an option, I will assume a probability of 50% that he was guilty, and 50% that he was innocent. Using these assumptions, we can calculate the following ultimate utilities:

Right Winger
Left Winger
Independent
Claim Guilt
-100
100
0
Claim Innocence
100
-100
0
Confess Ignorance
5
5
50

(I won’t go through this calculation in detail; it should be evident that given my simple assumptions of the probability and values, there will be no value for anyone in affirming guilt or innocence as such, but only in admitting ignorance, or in making a political point.) Given these values, obviously the left winger will choose to believe that Kavanaugh was guilty, the right winger will choose to believe that he was innocent, and the independent will admit to being ignorant.

This account obviously makes complete sense of people’s actual positions on the question, and it does that by assuming that people voluntarily choose to believe a position in the same way they choose to do other things. On the other hand, if you assume that belief is an involuntary evaluation of a state of affairs, how could the actual distribution of opinion possibly be explained?

As this is a point I have discussed many times in the past, I won’t try to respond to all possible objections. However, I will bring up two of them. In the example, I had to assume that people calculated using a probability of 50% for Kavanaugh’s guilt or innocence. So it could be objected that their “real” belief is that there is a 50% chance he was guilty, and the statement is simply an external thing.

This initial 50% is something like a prior probability, and corresponds to a general leaning towards or away from a position. As I admitted in discussion with Angra Mainyu, that inclination is largely involuntary. However, first, this is not what we call a “belief” in ordinary usage, since we frequently say that someone has a belief while having some qualms about it. Second, it is not completely immune from voluntary influences. In practice in a situation like this, it will represent something like everything the person knows about the subject and predicate apart from this particular claim. And much of what the person knows will already be in subject/predicate form, and the person will have arrived at it through a similar voluntary process.

Another objection is that at least in the case of something obviously true or obviously false, there cannot possibly be anything voluntary about it. No one can choose to believe that the moon is made of green cheese, for example.

I have responded to this to this in the past by pointing out that most of us also cannot choose to go and kill ourselves, right now, despite the fact that doing so would be voluntary. And in a similar way, there is nothing attractive about believing that the moon is made of green cheese, and so no one can do it. At least two objections will be made to this response:

1) I can’t go kill myself right now, but I know that this is because it would be bad. But I cannot believe that the moon is made of green cheese because it is false, not because it is bad.

2) It does not seem that much harm would be done by choosing to believe this about the moon, and then changing your mind after a few seconds. So if it is voluntary, why not prove it by doing so? Obviously you cannot do so.

Regarding the first point, it is true that believing the moon is made of cheese would be bad because it is false. And in fact, if you find falsity the reason you cannot accept it, how is that not because you regard falsity as really bad? In fact lack of attractiveness is extremely relevant here. If people can believe in Xenu, they would find it equally possible to believe that the moon was made of cheese, if that were the teaching of their religion. In that situation, the falsity of the claim would not be much obstacle at all.

Regarding the second point, there is a problem like Kavka’s Toxin here. Choosing to believe something, roughly speaking, means choosing to treat it as a fact, which implies a certain commitment. Choosing to act like it is true enough to say so, then immediately doing something else, is not choosing to believe it, but rather it is choosing to tell a lie. So just as one cannot intend to drink the toxin without expecting to actually drink it, so one cannot choose to believe something without expecting to continue to believe it for the foreseeable future. This is why one would not wish to accept such a statement about the moon, not only in order to prove something (especially since it would prove nothing; no one would admit that you had succeeded in believing it), but even if someone were to offer a very large incentive, say a million dollars if you managed to believe it. This would amount to offering to pay someone to give up their concern for truth entirely, and permanently.

Additionally, in the case of some very strange claims, it might be true that people do not know how to believe them, in the sense that they do not know what “acting as though this were the case” would even mean. This no more affects the general voluntariness of belief than the fact that some people cannot do backflips affects the fact that such bodily motions are in themselves voluntary.

Structure of Explanation

When we explain a thing, we give a cause; we assign the thing an origin that explains it.

We can go into a little more detail here. When we ask “why” something is the case, there is always an implication of possible alternatives. At the very least, the question implies, “Why is this the case rather than not being the case?” Thus “being the case” and “not being the case” are two possible alternatives.

The alternatives can be seen as possibilities in the sense explained in an earlier post. There may or may not be any actual matter involved, but again, the idea is that reality (or more specifically some part of reality) seems like something that would be open to being formed in one way or another, and we are asking why it is formed in one particular way rather than the other way. “Why is it raining?” In principle, the sky is open to being clear, or being filled with clouds and a thunderstorm, and to many other possibilities.

A successful explanation will be a complete explanation when it says “once you take the origin into account, the apparent alternatives were only apparent, and not really possible.” It will be a partial explanation when it says, “once you take the origin into account, the other alternatives were less sensible (i.e. made less sense as possibilities) than the actual thing.”

Let’s consider some examples in the form of “why” questions and answers.

Q1. Why do rocks fall? (e.g. instead of the alternatives of hovering in the air, going upwards, or anything else.)

A1. Gravity pulls things downwards, and rocks are heavier than air.

The answer gives an efficient cause, and once this cause is taken into account, it can be seen that hovering in the air or going upwards were not possibilities relative to that cause.

Obviously there is not meant to be a deep explanation here; the point here is to discuss the structure of explanation. The given answer is in fact basically Newton’s answer (although he provided more mathematical detail), while with general relativity Einstein provided a better explanation.

The explanation is incomplete in several ways. It is not a first cause; someone can now ask, “Why does gravity pull things downwards, instead of upwards or to the side?” Similarly, while it is in fact the cause of falling rocks, someone can still ask, “Why didn’t anything else prevent gravity from making the rocks fall?” This is a different question, and would require a different answer, but it seems to reopen the possibility of the rocks hovering or moving upwards, from a more general point of view. David Hume was in part appealing to the possibility of such additional questions when he said that we can see no necessary connection between cause and effect.

Q2. Why is 7 prime? (i.e. instead of the alternative of not being prime.)

A2. 7/2 = 3.5, so 7 is not divisible by 2. 7/3 = 2.333…, so 7 is not divisible by 3. In a similar way, it is not divisible by 4, 5, or 6. Thus in general it is not divisible by any number except 1 and itself, which is what it means to be prime.

If we assumed that the questioner did not know what being prime means, we could have given a purely formal response simply by noting that it is not divisible by numbers between 1 and itself, and explaining that this is what it is to be prime. As it is, the response gives a sufficient material disposition. Relative to this explanation, “not being prime,” was never a real possibility for 7 in the first place. The explanation is complete in that it completely excludes the apparent alternative.

Q3. Why did Peter go to the store? (e.g. instead of going to the park or the museum, or instead of staying home.)

A3. He went to the store in order to buy groceries.

The answer gives a final cause. In view of this cause the alternatives were merely apparent. Going to the park or the museum, or even staying home, were not possible since there were no groceries there.

As in the case of the rock, the explanation is partial in several ways. Someone can still ask, “Why did he want groceries?” And again someone can ask why he didn’t go to some other store, or why something didn’t hinder him, and so on. Such questions seem to reopen various possibilities, and thus the explanation is not an ultimately complete one.

Suppose, however, that someone brings up the possibility that instead of going to the store, he could have gone to his neighbor and offered money for groceries in his neighbor’s refrigerator. This possibility is not excluded simply by the purpose of buying groceries. Nonetheless, the possibility seems less sensible than getting them from the store, for multiple reasons. Again, the implication is that our explanation is only partial: it does not completely exclude alternatives, but it makes them less sensible.

Let’s consider a weirder question: Why is there something rather than nothing?

Now the alternatives are explicit, namely there being something, and there being nothing.

It can be seen that in one sense, as I said in the linked post, the question cannot have an answer, since there cannot be a cause or origin for “there is something” which would itself not be something. Nonetheless, if we consider the idea of possible alternatives, it is possible to see that the question does not need an answer; one of the alternatives was only an apparent alternative all along.

In other words, the sky can be open to being clear or cloudy. But there cannot be something which is open both to “there is something” and “there is nothing”, since any possibility of that kind would be “something which is open…”, which would already be something rather than nothing. The “nothing” alternative was merely apparent. Nothing was ever open to there being nothing.

Let’s consider another weird question. Suppose we throw a ball, and in the middle of the path we ask, Why is the ball in the middle of the path instead of at the end of the path?

We could respond in terms of a sufficient material disposition: it is in the middle of the path because you are asking your question at the middle, instead of waiting until the end.

Suppose the questioner responds: Look, I asked my question at the middle of the path. But that was just chance. I could have asked at any moment, including at the end. So I want to know why it was in the middle without considering when I am asking the question.

If we look at the question in this way, it can be seen in one way that no cause or origin can be given. Asked in this way, being at the end cannot be excluded, since they could have asked their question at the end. But like the question about something rather than nothing, the question does not need an answer. In this case, this is not because the alternatives were merely apparent in the sense that one was possible and the other not. But they were merely apparent in the sense that they were not alternatives. The ball goes both goes through the middle, and reaches the end. With the stipulation that we not consider the time of the question, the two possibilities are not mutually exclusive.

Additional Considerations

The above considerations about the nature of “explanation” lead to various conclusions, but also to various new questions. For example, one commenter suggested that “explanation” is merely subjective. Now as I said there, all experience is subjective experience (what would “objective experience” even mean, except that someone truly had a subjective experience?), including the experience of having an explanation. Nonetheless, the thing experienced is not subjective: the origins that we call explanations objectively exclude the apparent possibilities, or objectively make them less intelligible. The explanation of explanation here, however, provides an answer to what was perhaps the implicit question. Namely, why are we so interested in explanations in the first place, so that the experience of understanding something becomes a particularly special type of experience? Why, as Aristotle puts it, do “all men desire to know,” and why is that desire particularly satisfied by explanations?

In one sense it is sufficient simply to say that understanding is good in itself. Nonetheless, there is something particular about the structure of a human being that makes knowledge good for us, and which makes explanation a particularly desirable form of knowledge. In my employer and employee model of human psychology, I said that “the whole company is functioning well overall when the CEO’s goal of accurate prediction is regularly being achieved.” This very obviously requires knowledge, and explanation is especially beneficial because it excludes alternatives, which reduces uncertainty and therefore tends to make prediction more accurate.

However, my account also raises new questions. If explanation eliminates alternatives, what would happen if everything was explained? We could respond that “explaining everything” is not possible in the first place, but this is probably an inadequate response, because (from the linked argument) we only know that we cannot explain everything all at once, the way the person in the room cannot draw everything at once; we do not know that there is any particular thing that cannot be explained, just as there is no particular aspect of the room that cannot be drawn. So there can still be a question about what would happen if every particular thing in fact has an explanation, even if we cannot know all the explanations at once. In particular, since explanation eliminates alternatives, does the existence of explanations imply that there are not really any alternatives? This would suggest something like Leibniz’s argument that the actual world is the best possible world. It is easy to see that such an idea implies that there was only one “possibility” in the first place: Leibniz’s “best possible world” would be rather “the only possible world,” since the apparent alternatives, given that they would have been worse, were not real alternatives in the first place.

On the other hand, if we suppose that this is not the case, and there are ultimately many possibilities, does this imply the existence of “brute facts,” things that could have been otherwise, but which simply have no explanation? Or at least things that have no complete explanation?

Let the reader understand. I have already implicitly answered these questions. However, I will not link here to the implicit answers because if one finds it unclear when and where this was done, one would probably also find those answers unclear and inconclusive. Of course it is also possible that the reader does see when this was done, but still believes those responses inadequate. In any case, it is possible to provide the answers in a form which is much clearer and more conclusive, but this will likely not be a short or simple project.

Rao’s Divergentism

The main point of this post is to encourage the reader who has not yet done so, to read Venkatesh Rao’s essay Can You Hear Me Now. I will not say too much about it. The purpose is potentially for future reference, and simply to point out a connection with some current topics here.

Rao begins:

The fundamental question of life, the universe and everything is the one popularized by the Verizon guy in the ad: Can you hear me now?

This conclusion grew out of a conversation I had about a year ago, with some friends, in which I proposed a modest-little philosophy I dubbed divergentism. Here is a picture.

https://206hwf3fj4w52u3br03fi242-wpengine.netdna-ssl.com/wp-content/uploads/2015/12/divergentism.jpg

Divergentism is the idea that as individuals grow out into the universe, they diverge from each other in thought-space. This, I argued, is true even if in absolute terms, the sum of shared beliefs is steadily increasing. Because the sum of beliefs that are not shared increases even faster on average. Unfortunately, you are unique, just like everybody else.

If you are a divergentist, you believe that as you age, the average answer to the fundamental Verizon question slowly drifts, as you age, from yes, to no, to silenceIf you’re unlucky, you’re a hedgehog and get unhappier and unhappier about this as you age. If you are lucky, you’re a fox and you increasingly make your peace with this condition. If you’re really lucky, you die too early to notice the slowly descending silence, before it even becomes necessary to Google the phrase existential horror.

To me, this seemed like a completely obvious idea. Much to my delight, most people I ran it by immediately hated it.

The entire essay is worth reading.

I would question whether this is really the “fundamental question of life, the universe, and everything,” but Rao has a point. People do tend to think of their life as meaningful on account of social connections, and if those social connections grow increasingly weaker, they will tend to worry that their life is becoming less meaningful.

The point about the intellectual life of an individual is largely true. This is connected to what I said about the philosophical progress of an individual some days ago. There is also a connection with Kuhn’s idea of how the progress of the sciences causes a gulf to arise between them in such a way that it becomes more and more difficult for scientists in different fields to communicate with one another. If we look at the overall intellectual life of an individual as a sort of individual advancing science, the “sciences” of each individual will generally speaking tend to diverge from one another, allowing less and less communication. This is not about people making mistakes, although obviously making mistakes will contribute to this process. As Rao says, it may be that “the sum of shared beliefs is steadily increasing,” but this will not prevent their intellectual lives overall from diverging, just as the divergence of the sciences does not result from falsity, but from increasingly detailed focus on different truths.

Pseudoscience

James Chastek reflects on science, pseudoscience, and religion:

The demarcation problem is a name for our failure to identify criteria that can distinguish science from pseudo-science, in spite of there being two such things. In the absence of rational criteria, we get clarity on the difference from various institutional-cultural institutions, like the consensus produced by university gatekeepers though peer review (which generates, by definition, peer pressure), grants, prestige, and other stick-and-carrot means.  Like most institutions we expect it to do reasonably well (or at least better than an every-man-for-himself chaos) though it will come at a cost of group-think, elitism, the occasional witch hunt etc..

The demarcation problem generalizes to our failure to identify any meta-criterion for what counts as legitimate discourse or belief. Kant’s famous attempt to articulate meta-criteria for thought, which concluded to limiting it to an intuition of Euclidean space distinct from linear time turned out to be no limitation at all, and Davidson pointed out that the very idea of a conceptual scheme – a finite scope or limit to human thought that could be determined in advance – requires us to posit a language that is in-principle untranslatable, which is to speak of something that has to meaning. Heraclitus was right – you can’t come to the borders of thought, even if you travel down every road. We simply can’t articulate a domain of acceptable belief in general from which we can identify the auslanders.

This is true of religion as well. By our own resources we can know there are pseudo ones and truer ones, but the degree of clarity we want in this area is going to have to be borrowed from an intellect other than our own. The various religious institutions are attempts to make up for this deficiency in reason and provide us with clearer and more precise articulations of true religion in exactly the same way that we get it in the sciences. That a westerner tends to accept Christianity arises from the same sort of process that makes him tend to accept scientific consensus. He walks within the ambit of various institutions that are designed to help him toward truth, and they almost certainly succeed at this more than he would succeed if left solely to his own lights. Anyone who thinks he can easily identify true science while no one can identify true religion is right in a sense, but he doesn’t recognize how heavily his belief is resting on institutional power.

Like Sean Collins as quoted in this earlier post, Chastek seems to be unreasonably emphasizing the similarity between science and religion where in fact there is a greater dissimilarity. As discussed in the last post, a field is only considered scientific once it has completely dominated the area of thought among persistent students of that field. It is not exactly that “no one disagrees,” so much as that it becomes too complicated for anyone except those students. But those students, to an extremely high degree, have a unified view of the field. An actual equivalent in the area of religion would be if virtually all theologians accepted the same religion. Even here, it might be a bit strange to find whole countries that accepted another religion, the way it would be strange to find a whole country believing in a flat earth. But perhaps not so strange; occasionally you do get a poll indicating a fairly large percentage of some nation believing some claim entirely opposed to the paradigm of some field of science. Nonetheless, if virtually all theologians accepted the same religion, the comparison between science and religion would be pretty apt. Since that is not the case in the slightest, religion looks more like a field where knowledge remains “undeveloped,” in the way I suggested in reference to some areas of philosophy.

Chastek is right to note that one cannot set down some absolute list of rules setting apart reasonable thought from unreasonable thought, or science from pseudoscience. Nonetheless, reflecting on the comments to the previous post, it occurs to me that we have a pretty good idea of what pseudoscience is. The term itself, of course, means something like “fake science,” so the idea would be something purporting to be scientific which is not scientific.

A recurring element in Kuhn’s book, as in the title itself, is the idea of change in scientific paradigms. Kuhn remarks:

Probably the single most prevalent claim advanced by the proponents of a new paradigm is that they can solve the problems that have led the old one to a crisis. When it can legitimately be made, this claim is often the most effective one possible. In the area for which it is advanced the paradigm is known to be in trouble. That trouble has repeatedly been explored, and attempts to remove it have again and again proved vain. “Crucial experiments”—those able to discriminate particularly sharply between the two paradigms—have been recognized and attested before the new paradigm was even invented. Copernicus thus claimed that he had solved the long-vexing problem of the length of the calendar year, Newton that he had reconciled terrestrial and celestial mechanics, Lavoisier that he had solved the problems of gas-identity and of weight relations, and Einstein that he had made electrodynamics compatible with a revised science of motion.

Some pages later, considering why paradigm change is considered progress, he continues:

Because the unit of scientific achievement is the solved problem and because the group knows well which problems have already been solved, few scientists will easily be persuaded to adopt a viewpoint that again opens to question many problems that had previously been solved. Nature itself must first undermine professional security by making prior achievements seem problematic. Furthermore, even when that has occurred and a new candidate for paradigm has been evoked, scientists will be reluctant to embrace it unless convinced that two all-important conditions are being met. First, the new candidate must seem to resolve some outstanding and generally recognized problem that can be met in no other way. Second, the new paradigm must promise to preserve a relatively large part of the concrete problem-solving ability that has accrued to science through its predecessors. Novelty for its own sake is not a desideratum in the sciences as it is in so many other creative fields. As a result, though new paradigms seldom or never possess all the capabilities of their predecessors, they usually preserve a great deal of the most concrete parts of past achievement and they always permit additional concrete problem-solutions besides.

It is not automatically unscientific to suggest that the current paradigm is somehow mistaken and needs to be replaced: in fact the whole idea of paradigm change depends on scientists doing this on a fairly frequent basis. But Kuhn suggests that this mainly happens when there are well known problems with the current paradigm. Additionally, when a new one is proposed, it should be in order to solve new problems. This suggests one particular form of pseudoscientific behavior: to propose new paradigms when there are no special problems with the current ones. Or at any rate, to propose that they be taken just as seriously as the current ones; there is not necessarily anything unreasonable about saying, “Although we currently view things according to paradigm A, someday we might need to adopt something somewhat like paradigm B,” even if one is not yet aware of any great problems with paradigm A.

A particularly anti-scientific form of this would be to propose that the current paradigm be abandoned in favor of an earlier one. It is easy to see why scientists would be especially opposed to such a proposal: since the earlier one was abandoned in order to solve new problems and to resolve more and more serious discrepancies between the paradigm and experience, going back to an earlier paradigm would suddenly create all sorts of new problems.

On the other hand, why do we have the “science” part of “pseudoscience”? This is related to Chastek’s point about institutions as a force creating conformity of opinion. The pseudoscientist is a sort of predator in relation to these institutions. While the goal of science is truth, at least to a first approximation, the pseudoscientist has something different in mind: this is clear from the fact that he does not care whether his theory solves any new problems, and it is even more clear in the case of a retrogressive proposal. But the pseudoscientist will attempt to use the institutions of science to advance his cause. This will tend in reality to be highly unsuccessful in relation to ordinary scientists, for the same reason that Kuhn remarks that scientists who refuse to adopt a new paradigm after its general acceptance “are simply read out of the profession, which thereafter ignores their work.” In a similar way, if someone proposes an unnecessary paradigm change, scientists will simply ignore the proposal. But if the pseudoscientist manages to get beyond certain barriers, e.g. peer review, it may be more difficult for ordinary people to distinguish between ordinary science and pseudoscience, since they are not in fact using their own understanding of the matter, but simply possess a general trust that the scientists know the general truth about the field.

One of the most common usages of the term “pseudoscience” is in relation to young earth creationism, and rightly so. This is in fact a case of attempting to return to an earlier paradigm which was abandoned precisely because of the kind of tensions that are typical of paradigm change. Thus one of their favorite methods is to attempt to get things published in peer reviewed journals. Very occasionally this is successful, but obviously it has very little effect on the field itself: just as with late adopters or people who never change their mind, the rest of the field, as Kuhn says, “ignores their work.” But to the degree that they manage to lead ordinary people to adopt their views, this is to act in a sort of predator relationship with the institutions of science: to take advantage of these institutions for the sake of falsehood rather than truth.

That’s kind of blunt, someone will say. If paradigm change is frequently necessary, surely it could happen at least once that a former paradigm was better than a later one, such that it would be necessary to return to it, and for the sake of truth. People are not infallible, so surely this is possible.

Indeed, it is possible. But very unlikely, for all the reasons that Kuhn mentions. And in order for such a proposal to be truth oriented, it would have to be motivated by the perception of problems with the current paradigm, even if they were problems that had not been foreseen when the original paradigm was abandoned. In practice such proposals are normally not motivated by problems at all,  and thus there is very little orientation towards truth in them.

Naturally, all of this has some bearing on the comments to the last post, but I will leave most of that to the reader’s consideration. I will remark, however, that things like “he is simply ignorant of basic physics because he is a computer scientist, not a physicist,” or “Your last question tells me that you do not know much physics,” or that it is important not to “ignore the verdict of the reviewers and editors of a respected physics journal,” might be important clues for the ordinary fellow.

Technical Discussion and Philosophical Progress

In The Structure of Scientific Revolutions (p. 19-21), Thomas Kuhn remarks on the tendency of sciences to acquire a technical vocabulary and manner of discussion:

We shall be examining the nature of this highly directed or paradigm-based research in the next section, but must first note briefly how the emergence of a paradigm affects the structure of the group that practices the field. When, in the development of a natural science, an individual or group first produces a synthesis able to attract most of the next generation’s practitioners, the older schools gradually disappear. In part their disappearance is caused by their members’ conversion to the new paradigm. But there are always some men who cling to one or another of the older views, and they are simply read out of the profession, which thereafter ignores their work. The new paradigm implies a new and more rigid definition of the field. Those unwilling or unable to accommodate their work to it must proceed in isolation or attach themselves to some other group. Historically, they have often simply stayed in the departments of philosophy from which so many of the special sciences have been spawned. As these indications hint, it is sometimes just its reception of a paradigm that transforms a group previously interested merely in the study of nature into a profession or, at least, a discipline. In the sciences (though not in fields like medicine, technology, and law, of which the principal raison d’être is an external social need), the formation of specialized journals, the foundation of specialists’ societies, and the claim for a special place in the curriculum have usually been associated with a group’s first reception of a single paradigm. At least this was the case between the time, a century and a half ago, when the institutional pattern of scientific specialization first developed and the very recent time when the paraphernalia of specialization acquired a prestige of their own.

The more rigid definition of the scientific group has other consequences. When the individual scientist can take a paradigm for granted, he need no longer, in his major works, attempt to build his field anew, starting from first principles and justifying the use of each concept introduced. That can be left to the writer of textbooks. Given a textbook, however, the creative scientist can begin his research where it leaves off and thus concentrate exclusively upon the subtlest and most esoteric aspects of the natural phenomena that concern his group. And as he does this, his research communiqués will begin to change in ways whose evolution has been too little studied but whose modern end products are obvious to all and oppressive to many. No longer will his researches usually be embodied in books addressed, like Franklin’s Experiments . . . on Electricity or Darwin’s Origin of Species, to anyone who might be interested in the subject matter of the field. Instead they will usually appear as brief articles addressed only to professional colleagues, the men whose knowledge of a shared paradigm can be assumed and who prove to be the only ones able to read the papers addressed to them.

Today in the sciences, books are usually either texts or retrospective reflections upon one aspect or another of the scientific life. The scientist who writes one is more likely to find his professional reputation impaired than enhanced. Only in the earlier, pre-paradigm, stages of the development of the various sciences did the book ordinarily possess the same relation to professional achievement that it still retains in other creative fields. And only in those fields that still retain the book, with or without the article, as a vehicle for research communication are the lines of professionalization still so loosely drawn that the layman may hope to follow progress by reading the practitioners’ original reports. Both in mathematics and astronomy, research reports had ceased already in antiquity to be intelligible to a generally educated audience. In dynamics, research became similarly esoteric in the later Middle Ages, and it recaptured general intelligibility only briefly during the early seventeenth century when a new paradigm replaced the one that had guided medieval research. Electrical research began to require translation for the layman before the end of the eighteenth century, and most other fields of physical science ceased to be generally accessible in the nineteenth. During the same two centuries similar transitions can be isolated in the various parts of the biological sciences. In parts of the social sciences they may well be occurring today. Although it has become customary, and is surely proper, to deplore the widening gulf that separates the professional scientist from his colleagues in other fields, too little attention is paid to the essential relationship between that gulf and the mechanisms intrinsic to scientific advance.

As Kuhn says, this tendency has very well known results. Consider the papers constantly being published at arxiv.org, for example. If you are not familiar with the science in question, you will likely not be able to understand even the title, let alone the summary or the content. Many or most of the words will be meaningless to you, and even if they are not, their combinations will be.

It is also not difficult to see why this happens, and why it must happen. Everything we understand, we understand through form, which is a network of relationships. Thus if particular investigators wish to go into something in greater detail, these relationships will become more and more remote from the ordinary knowledge accessible to everyone. “Just say it in simple words” will become literally impossible, in the sense that explaining the “simple” statement will involve explaining a huge number of relationships that by default a person would have no knowledge of. That is the purpose, as Kuhn notes, of textbooks, namely to form connections between everyday knowledge and the more complex relationships studied in particular fields.

In Chapter XIII, Kuhn relates this sort of development with the word “science” and progress:

The preceding pages have carried my schematic description of scientific development as far as it can go in this essay. Nevertheless, they cannot quite provide a conclusion. If this description has at all caught the essential structure of a science’s continuing evolution, it will simultaneously have posed a special problem: Why should the enterprise sketched above move steadily ahead in ways that, say, art, political theory, or philosophy does not? Why is progress a perquisite reserved almost exclusively for the activities we call science? The most usual answers to that question have been denied in the body of this essay. We must conclude it by asking whether substitutes can be found.

Notice immediately that part of the question is entirely semantic. To a very great extent the term ‘science’ is reserved for fields that do progress in obvious ways. Nowhere does this show more clearly than in the recurrent debates about whether one or another of the contemporary social sciences is really a science. These debates have parallels in the pre-paradigm periods of fields that are today unhesitatingly labeled science. Their ostensible issue throughout is a definition of that vexing term. Men argue that psychology, for example, is a science because it possesses such and such characteristics. Others counter that those characteristics are either unnecessary or not sufficient to make a field a science. Often great energy is invested, great passion aroused, and the outsider is at a loss to know why. Can very much depend upon a definition of ‘science’? Can a definition tell a man whether he is a scientist or not? If so, why do not natural scientists or artists worry about the definition of the term? Inevitably one suspects that the issue is more fundamental. Probably questions like the following are really being asked: Why does my field fail to move ahead in the way that, say, physics does? What changes in technique or method or ideology would enable it to do so? These are not, however, questions that could respond to an agreement on definition. Furthermore, if precedent from the natural sciences serves, they will cease to be a source of concern not when a definition is found, but when the groups that now doubt their own status achieve consensus about their past and present accomplishments. It may, for example, be significant that economists argue less about whether their field is a science than do practitioners of some other fields of social science. Is that because economists know what science is? Or is it rather economics about which they agree?

The last point is telling. There is significantly more consensus among economists than among other sorts of social science, and consequently less worry about whether their field is scientific or not. The difference, then, is a difference of how much agreement is found. There is not necessarily any difference with respect to the kind of increasingly detailed thought that results in increasingly technical discussion. Kuhn remarks:

The theologian who articulates dogma or the philosopher who refines the Kantian imperatives contributes to progress, if only to that of the group that shares his premises. No creative school recognizes a category of work that is, on the one hand, a creative success, but is not, on the other, an addition to the collective achievement of the group. If we doubt, as many do, that nonscientific fields make progress, that cannot be because individual schools make none. Rather, it must be because there are always competing schools, each of which constantly questions the very foundations of the others. The man who argues that philosophy, for example, has made no progress emphasizes that there are still Aristotelians, not that Aristotelianism has failed to progress.

In this sense, if a particular school believes they possess the general truth about some matter (here theology or philosophy), they will quite naturally begin to discuss it in greater detail and in ways which are mainly intelligible to students of that school, just as happens in other technical fields. The field is only failing to progress in the sense that there are other large communities making contrasting claims, while we begin to use the term “science” and to speak of progress when one school completely dominates the field, and to a first approximation even people who know nothing about it assume that the particular school has things basically right.

What does this imply about progress in philosophy?

1. There is progress in the knowledge of topics that were once considered “philosophy,” but when we get to this point, we usually begin to use the name of a particular science, and with good reason, since technical specialization arises in the manner discussed above. Tyler Cowen discusses this sort of thing here.

2. Areas in which there doesn’t seem to be such progress, are probably most often areas where human knowledge remains at an early stage of development; it is precisely at such early stages that discussion does not have a technical character and when it can generally be understood by ordinary people without a specialized education. I pointed out that Aristotle was mistaken to assume that the sciences in general were fully developed. We would be equally mistaken to make such an assumption at the present times. As Kuhn notes, astronomy and mathematics achieved a “scientific” stage centuries before geology and biology did the same, and these long before economics and the like. The conclusion that one should draw is that metaphysics is hard, not that it is impossible or meaningless.

3. Even now, particular philosophical schools or individuals can make progress even without such consensus. This is evidently true if their overall position is correct or more correct than that of others, but it remains true even if their overall position is more wrong than that of other schools. Naturally, in the latter situation, they will not advance beyond the better position of other schools, but they will advance.

4. One who wishes to progress philosophically cannot avoid the tendency to technical specialization, even as an individual. This can be rather problematic for bloggers and people engaging in similar projects. John Nerst describes this problem:

The more I think about this issue the more unsolvable it seems to become. Loyal readers of a publication won’t be satisfied by having the same points reiterated again and again. News media get around this by focusing on, well, news. News are events, you can describe them and react to them for a while until they’re no longer news. Publications that aim to be more analytical and focus on discussing ideas, frameworks, slow processes and large-scale narratives instead of events have a more difficult task because their subject matter doesn’t change quickly enough for it to be possible to churn out new material every day without repeating yourself[2].

Unless you start building upwards. Instead of laying out stone after stone on the ground you put one on top of another, and then one on top of two others laying next to each other, and then one on top of all that, making a single three-level structure. In practice this means writing new material that builds on what came before, taking ideas further and further towards greater complexity, nuance and sophistication. This is what academia does when working correctly.

Mass media (including the more analytical outlets) do it very little and it’s obvious why: it’s too demanding[3]. If an article references six other things you need to have read to fully understand it you’re going to have a lot of difficulty attracting new readers.

Some of his conclusions:

I think that’s the real reason I don’t try to pitch more writing to various online publications. In my summary of 2018 I said it was because I thought my writing was to “too idiosyncratic, abstract and personal to fit in anywhere but my own blog”. Now I think the main reason is that I don’t so much want to take part in public debate or make myself a career. I want to explore ideas that lie at the edge of my own thinking. To do that I must assume that a reader knows broadly the same things I know and I’m just not that interested in writing about things where I can’t do that[9]. I want to follow my thoughts to for me new and unknown places — and import whatever packages I need to do it. This style isn’t compatible with the expectation that a piece will be able to stand on its own and deliver a single recognizable (and defensible) point[10].

The downside is of course obscurity. To achieve both relevance in the wider world and to build on other ideas enough to reach for the sky you need extraordinary success — so extraordinary that you’re essentially pulling the rest of the world along with you.

Obscurity is certainly one result. Another (relevant at least from the VP’s point of view) is disrespect. Scientists are generally respected despite the general incomprehensibility of their writing, on account of the absence of opposing schools. This lack leads people to assume that their arguments must be mostly right, even though they cannot understand them themselves. This can actually lead to an “Emperor has No Clothes” situation, where a scientist publishes something basically crazy, but others, even in his field, are reluctant to say so because they might appear to be the ones who are ignorant. As an example, consider Joy Christian’s “Disproof of Bell’s Theorem.” After reading this text, Scott Aaronson comments:

In response to my post criticizing his “disproof” of Bell’s Theorem, Joy Christian taunted me that “all I knew was words.”  By this, he meant that my criticisms were entirely based on circumstantial evidence, for example that (1) Joy clearly didn’t understand what the word “theorem” even meant, (2) every other sentence he uttered contained howling misconceptions, (3) his papers were written in an obscure, “crackpot” way, and (4) several people had written very clear papers pointing out mathematical errors in his work, to which Joy had responded only with bluster.  But I hadn’t actually studied Joy’s “work” at a technical level.  Well, yesterday I finally did, and I confess that I was astonished by what I found.  Before, I’d actually given Joy some tiny benefit of the doubt—possibly misled by the length and semi-respectful tone of the papers refuting his claims.  I had assumed that Joy’s errors, though ultimately trivial (how could they not be, when he’s claiming to contradict such a well-understood fact provable with a few lines of arithmetic?), would nevertheless be artfully concealed, and would require some expertise in geometric algebra to spot.  I’d also assumed that of course Joy would have some well-defined hidden-variable model that reproduced the quantum-mechanical predictions for the Bell/CHSH experiment (how could he not?), and that the “only” problem would be that, due to cleverly-hidden mistakes, his model would be subtly nonlocal.

What I actually found was a thousand times worse: closer to the stuff freshmen scrawl on an exam when they have no clue what they’re talking about but are hoping for a few pity points.  It’s so bad that I don’t understand how even Joy’s fellow crackpots haven’t laughed this off the stage.  Look, Joy has a hidden variable λ, which is either 1 or -1 uniformly at random.  He also has a measurement choice a of Alice, and a measurement choice b of Bob.  He then defines Alice and Bob’s measurement outcomes A and B via the following functions:

A(a,λ) = something complicated = (as Joy correctly observes) λ

B(b,λ) = something complicated = (as Joy correctly observes) -λ

I shit you not.  A(a,λ) = λ, and B(b,λ) = -λ.  Neither A nor B has any dependence on the choices of measurement a and b, and the complicated definitions that he gives for them turn out to be completely superfluous.  No matter what measurements are made, A and B are always perfectly anticorrelated with each other.

You might wonder: what could lead anyone—no matter how deluded—even to think such a thing could violate the Bell/CHSH inequalities?

“Give opposite answers in all cases” is in fact entirely irrelevant to Bell’s inequality. Thus the rest of Joy’s paper has no bearing whatsoever on the issue: it is essentially meaningless nonsense. Aaronson says he was possibly “misled by the length and semi-respectful tone of the papers refuting his claims.” But it is not difficult to see why people would be cautious in this way: the fear that they would turn out to be the ones missing something important.

The individual blogger in philosophy, however, is in a different position. If they wish to develop their thought it must become more technical, and there is no similar community backing that would cause others to assume that the writing basically makes sense. Thus, one’s writing is not only likely to become more and more obscure, but others will become more and more likely to assume that it is more or less meaningless word salad. This will happen even more to the degree that there is cultural opposition to one’s vocabulary, concepts, and topics.