**Fire vs. Water**

“All things are water,” says Thales.

“All things are fire,” says Heraclitus.

“Wait,” says David Hume’s Philo. “You both agree that all things are made up of one substance. Thales, you prefer to call it water, and Heraclitus, you prefer to call it fire. But isn’t that merely a verbal dispute? According to both of you, whatever you point at is fundamentally the same fundamental stuff. So whether you point at water or fire, or anything else, for that matter, you are always pointing at the same fundamental stuff. Where is the real disagreement?”

Philo has a somewhat valid point here, and I mentioned the same thing in the linked post referring to Thales. Nonetheless, as I also said in the same post, as well as in the discussion of the disagreement about God, while there is some common ground, there are also likely remaining points of disagreement. It might depend on context, and perhaps the disagreement is more about the best way of thinking about things than about the things themselves, somewhat like discussing whether the earth or the universe is the thing spinning, but Heraclitus could respond, for example, by saying that thinking of the fundamental stuff as fire is more valid because fire is constantly changing, while water often appears to be completely still, and (Heraclitus claims) everything is in fact constantly changing. This could represent a real disagreement, but it is not a large one, and Thales could simply respond: “Ok, everything is flowing water. Problem fixed.”

**Numbers**

It is said that Pythagoras and his followers held that “all things are numbers.” To what degree and in what sense this attribution is accurate is unclear, but in any case, some people hold this very position today, even if they would not call themselves Pythagoreans. Thus for example in a recent episode of Sean Carroll’s podcast, Carroll speaks with Max Tegmark, who seems to adopt this position:

0:23:37 MT: It’s squishy a little bit blue and moose like. [laughter] Those properties, I just described don’t sound very mathematical at all. But when we look at it, Sean through our physics eyes, we see that it’s actually a blob of quarks and electrons. And what properties does an electron have? It has the property, minus one, one half, one, and so on. We, physicists have made up these nerdy names for these properties like electric charge, spin, lepton number. But it’s just we humans who invented that language of calling them that, they are really just numbers. And you know as well as I do that the only difference between an electron and a top quark is what numbers its properties are. We have not discovered any other properties that they actually have. So that’s the stuff in space, all the different particles, in the Standard Model, you’ve written so much nice stuff about in your books are all described by just by sets of numbers. What about the space that they’re in? What property does the space have? I think I actually have your old nerdy non-popular, right?

0:24:50 SC: My unpopular book, yes.

0:24:52 MT: Space has, for example, the property three, that’s a number and we have a nerdy name for that too. We call it the dimensionality of space. It’s the maximum number of fingers I can put in space that are all perpendicular to each other. The name dimensionality is just the human language thing, the property is three. We also discovered that it has some other properties, like curvature and topology that Einstein was interested in. But those are all mathematical properties too. And as far as we know today in physics, we have never discovered any properties of either space or the stuff in space yet that are actually non-mathematical. And then it starts to feel a little bit less insane that maybe we are living in a mathematical object. It’s not so different from if you were a character living in a video game. And you started to analyze how your world worked. You would secretly be discovering just the mathematical workings of the code, right?

Tegmark presumably would believe that by saying that things “are really just numbers,” he would disagree with Thales and Heraclitus about the nature of things. But does he? Philo might well be skeptical that there is any meaningful disagreement here, just as between Thales and Heraclitus. As soon as you begin to say, “all things are this particular kind of thing,” the same issues will arise to hinder your disagreement with others who characterize things in a different way.

The discussion might be clearer if I put my cards on the table in advance:

First, there is some validity to the objection, just as there is to the objection concerning the difference between Thales and Heraclitus.

Second, there is nonetheless some residual disagreement, and on that basis it turns out that Tegmark and Pythagoras are more correct than Thales and Heraclitus.

Third, Tegmark most likely does not understand the sense in which he might be correct, rather supposing himself correct the way Thales might suppose himself correct in insisting, “No, things are **really** not fire, they are really water.”

**Mathematical and non-mathematical properties**

As an approach to these issues, consider the statement by Tegmark, “We have never discovered any properties of either space or the stuff in space yet that are actually non-mathematical.”

What would it look like if we found a property that was “actually non-mathematical?” Well, what about the property of being blue? As Tegmark remarks, that does not sound very mathematical. But it turns out that color is a certain property of a surface regarding how it reflects flight, and this is much more of a “mathematical” property, at least in the sense that we can give it a mathematical description, which we would have a hard time doing if we simply took the word “blue.”

So presumably we would find a non-mathematical property by seeing some property of things, then investigating it, and then concluding, “We have fully investigated this property and there is no mathematical description of it.” This did not happen with the color blue, nor has it yet happened with any other property; either we can say that we have not yet fully investigated it, or we can give some sort of mathematical description.

Tegmark appears to take the above situation to be surprising. Wow, we might have found reality to be non-mathematical, but it actually turns out to be entirely mathematical! I suggest something different. As hinted by connection with the linked post, things could not have turned out differently. A sufficiently detailed analysis of anything will be a mathematical analysis or something very like it. But this is not because things “are actually just numbers,” as though this were some deep discovery about the essence of things, but because of what it is for people to engage in “a detailed analysis” of anything.

Suppose you want to investigate some thing or some property. The first thing you need to do is to distinguish it from other things or other properties. The color blue is not the color red, the color yellow, or the color green.

Numbers are involved right here at the very first step. There are at least *three* colors, namely red, yellow, and blue.

Of course we can find more colors, but what if it turns out there seems to be no definite number of them, but we can always find more? Even in this situation, in order to “analyze” them, we need some way of distinguishing and comparing them. We will put them in some sort of order: one color is brighter than another, or one length is greater than another, or one sound is higher pitched than another.

As soon as you find some ordering of that sort (brightness, or greatness of length, or pitch), it will become possible to give a mathematical analysis in terms of the real numbers, as we discussed in relation to “good” and “better.” Now someone defending Tegmark might respond: there was no guarantee we would find any such measure or any such method to compare them. Without such a measure, you could perhaps count your property along with other properties. But you could not give a mathematical analysis of the property itself. So it is surprising that it turned out this way.

But you distinguished your property from other properties, and that must have involved recognizing some things in common with other properties, at least that it was something rather than nothing and that it was a property, and some ways in which it was different from other properties. Thus for example blue, like red, can be seen, while a musical note can be heard but not seen (at least by most people.) Red and blue have in common that they are colors. But what is the difference between them? If we are to respond in any way to this question, except perhaps, “it looks different,” we must find some comparison. And if we find a comparison, we are well on the way to a mathematical account. If we don’t find a comparison, people might rightly complain that we have not yet done any detailed investigation.

But to make the point stronger, let’s assume the best we can do is “it looks different.” Even if this is the case, this very thing will allow us to construct a comparison that will ultimately allow us to construct a mathematical measure. For “it looks different” is itself something that comes in degrees. Blue looks different from red, but orange does so as well, just less different. Insofar as this judgment is somewhat subjective, it might be hard to get a great deal of accuracy with this method. But it would indeed begin to supply us with a kind of sliding scale of colors, and we would be able to number this scale with the real numbers.

From a historical point of view, it took a while for people to realize that this would always be possible. Thus for example Isidore of Seville said that “unless sounds are held by the memory of man, they perish, because they cannot be written down.” It was not, however, so much ignorance of sound that caused this, as ignorance of “detailed analysis.”

This is closely connected to what we said about names. A mathematical analysis is a detailed system of naming, where we name not only individual items, but also various groups, using names like “two,” “three,” and “four.” If we find that we cannot simply count the thing, but we can always find more examples, we look for comparative ways to name them. And when we find a comparison, we note that some things are more distant from one end of the scale and other things are less distant. This allows us to analyze the property using real numbers or some similar mathematical concept. This is also related to our discussion of technical terminology; in an advanced stage any science will begin to use somewhat mathematical methods. Unfortunately, this can also result in people adopting mathematical language in order to *look* like their understanding has reached an advanced stage, when it has not.

It should be sufficiently clear from this why I suggested that things could not have turned out otherwise. A “non-mathematical” property, in Tegmark’s sense, can only be a property you haven’t analyzed, or one that you haven’t succeeded in analyzing if you did attempt it.

**The three consequences**

Above, I made three claims about Tegmark’s position. The reasons for them may already be somewhat clarified by the above, but nonetheless I will look at this in a bit more detail.

First, I said there was some truth in the objection that “everything is numbers” is not much different from “everything is water,” or “everything is fire.” One notices some “hand-waving,” so to speak, in Tegmark’s claim that “We, physicists have made up these nerdy names for these properties like electric charge, spin, lepton number. But it’s just we humans who invented that language of calling them that, they are really just numbers.” A *measure* of charge or spin or whatever may be a number. But who is to say the thing being measured is a number? Nonetheless, there is a reasonable point there. If you are to give an account at all, it will in some way express the form of the thing, which implies explaining relationships, which depends on the distinction of various related things, which entails the possibility of counting the things that are related. In other words, someone could say, “You have a mathematical account of a thing. But the thing itself is non-mathematical.” But if you then ask them to explain that non-mathematical thing, the new explanation will be just as mathematical as the original explanation.

Given this fact, namely that the “mathematical” aspect is a question of how detailed explanations work, what is the difference between saying “we can give a mathematical explanation, but apart from explanations, the things are numbers,” and “we can give a mathematical explanation, but apart from explanations, the things are fires?”

Exactly. There isn’t much difference. Nonetheless, I made the second claim that there is some residual disagreement and that by this measure, the mathematical claim is better than the one about fire or water. Of course we don’t really know what Thales or Heraclitus thought in detail. But Aristotle, at any rate, claimed that Thales intended to assert that material causes alone exist. And this would be at least a reasonable understanding of the claim that all things are water, or fire. Just as Heraclitus could say that fire is a better term than water because fire is always changing, Thales, if he really wanted to exclude other causes, could say that water is a better term than “numbers” because water seems to be material and numbers do not. But since other causes do exist, the opposite is the case: the mathematical claim is better than the materialistic ones.

Many people say that Tegmark’s account is flawed in a similar way, but with respect to another cause; that is, that mathematical accounts exclude final causes. But this is a lot like Ed Feser’s claim that a mathematical account of color implies that colors don’t really exist; namely they are like in just being wrong. A mathematical account of color does not imply that things are not colored, and a mathematical account of the world does not imply that final causes do not exist. As I said early on, a final causes explains why an efficient cause does what it does, and there is nothing about a mathematical explanation that prevents you from saying why the efficient cause does what it does.

My third point, that Tegmark does not understand the sense in which he is right, should be plain enough. As I stated above, he takes it to be a somewhat surprising discovery that we consistently find it possible to give mathematical accounts of the world, and this only makes sense if we assume it would in theory have been possible to discover something else. But that could not have happened, not because the world couldn’t have been a certain way, but because of the nature of explanation.

Wha?