Counterfactuals and Causality

People have frequently noted some connection between counterfactuals and causation. While it seems backwards to suggest that causation should be defined in terms of counterfactuals, it is reasonable to connect the two concepts, and explains why some counterfactuals are more reasonable than others, as we noted in the last post.

For example, “If I dropped this cup, it would fall to the floor,” is more reasonable than “If I dropped this cup, it would fly up to the moon,” because we are considering the operation of causes like gravity which could cause falling to the floor, and which could not cause (merely by dropping) an object to fly to the moon. In particular, since causes eliminate alternatives, they give us a reason to say “this would have happened rather than that.”

Nonetheless, we cannot get any sort of absolute determination out of this. One would attempt to get a determinate outcome by specifying the counterfactual as clearly as possible: “If I dropped this cup, and everything else was the same.” The “nearest possible world” idea is trying to get at this. However, this is not in fact completely determinate because “everything else” can’t be entirely the same, and what else needs to change is not determinate. In order to drop the cup, there would need to be a course of events that led up to the dropping, and there are many different courses that could have done that. The same thing will happen if you to specify exactly what led to the dropping of the cup; there will need to be something that led to your specification. Thus, at the very least, you will not typically be able to get absolute determination in this way.

Naturally, there is nothing to prevent us from coming up particular examples where we can get complete determination by using something which is always true anyway, or by using logical implication from the counterfactual, e.g. “If I dropped this cup, 2 and 2 would still be 4,” or “If I dropped the cup, it would have been dropped.” But these are not typical cases.

Structure of Explanation

When we explain a thing, we give a cause; we assign the thing an origin that explains it.

We can go into a little more detail here. When we ask “why” something is the case, there is always an implication of possible alternatives. At the very least, the question implies, “Why is this the case rather than not being the case?” Thus “being the case” and “not being the case” are two possible alternatives.

The alternatives can be seen as possibilities in the sense explained in an earlier post. There may or may not be any actual matter involved, but again, the idea is that reality (or more specifically some part of reality) seems like something that would be open to being formed in one way or another, and we are asking why it is formed in one particular way rather than the other way. “Why is it raining?” In principle, the sky is open to being clear, or being filled with clouds and a thunderstorm, and to many other possibilities.

A successful explanation will be a complete explanation when it says “once you take the origin into account, the apparent alternatives were only apparent, and not really possible.” It will be a partial explanation when it says, “once you take the origin into account, the other alternatives were less sensible (i.e. made less sense as possibilities) than the actual thing.”

Let’s consider some examples in the form of “why” questions and answers.

Q1. Why do rocks fall? (e.g. instead of the alternatives of hovering in the air, going upwards, or anything else.)

A1. Gravity pulls things downwards, and rocks are heavier than air.

The answer gives an efficient cause, and once this cause is taken into account, it can be seen that hovering in the air or going upwards were not possibilities relative to that cause.

Obviously there is not meant to be a deep explanation here; the point here is to discuss the structure of explanation. The given answer is in fact basically Newton’s answer (although he provided more mathematical detail), while with general relativity Einstein provided a better explanation.

The explanation is incomplete in several ways. It is not a first cause; someone can now ask, “Why does gravity pull things downwards, instead of upwards or to the side?” Similarly, while it is in fact the cause of falling rocks, someone can still ask, “Why didn’t anything else prevent gravity from making the rocks fall?” This is a different question, and would require a different answer, but it seems to reopen the possibility of the rocks hovering or moving upwards, from a more general point of view. David Hume was in part appealing to the possibility of such additional questions when he said that we can see no necessary connection between cause and effect.

Q2. Why is 7 prime? (i.e. instead of the alternative of not being prime.)

A2. 7/2 = 3.5, so 7 is not divisible by 2. 7/3 = 2.333…, so 7 is not divisible by 3. In a similar way, it is not divisible by 4, 5, or 6. Thus in general it is not divisible by any number except 1 and itself, which is what it means to be prime.

If we assumed that the questioner did not know what being prime means, we could have given a purely formal response simply by noting that it is not divisible by numbers between 1 and itself, and explaining that this is what it is to be prime. As it is, the response gives a sufficient material disposition. Relative to this explanation, “not being prime,” was never a real possibility for 7 in the first place. The explanation is complete in that it completely excludes the apparent alternative.

Q3. Why did Peter go to the store? (e.g. instead of going to the park or the museum, or instead of staying home.)

A3. He went to the store in order to buy groceries.

The answer gives a final cause. In view of this cause the alternatives were merely apparent. Going to the park or the museum, or even staying home, were not possible since there were no groceries there.

As in the case of the rock, the explanation is partial in several ways. Someone can still ask, “Why did he want groceries?” And again someone can ask why he didn’t go to some other store, or why something didn’t hinder him, and so on. Such questions seem to reopen various possibilities, and thus the explanation is not an ultimately complete one.

Suppose, however, that someone brings up the possibility that instead of going to the store, he could have gone to his neighbor and offered money for groceries in his neighbor’s refrigerator. This possibility is not excluded simply by the purpose of buying groceries. Nonetheless, the possibility seems less sensible than getting them from the store, for multiple reasons. Again, the implication is that our explanation is only partial: it does not completely exclude alternatives, but it makes them less sensible.

Let’s consider a weirder question: Why is there something rather than nothing?

Now the alternatives are explicit, namely there being something, and there being nothing.

It can be seen that in one sense, as I said in the linked post, the question cannot have an answer, since there cannot be a cause or origin for “there is something” which would itself not be something. Nonetheless, if we consider the idea of possible alternatives, it is possible to see that the question does not need an answer; one of the alternatives was only an apparent alternative all along.

In other words, the sky can be open to being clear or cloudy. But there cannot be something which is open both to “there is something” and “there is nothing”, since any possibility of that kind would be “something which is open…”, which would already be something rather than nothing. The “nothing” alternative was merely apparent. Nothing was ever open to there being nothing.

Let’s consider another weird question. Suppose we throw a ball, and in the middle of the path we ask, Why is the ball in the middle of the path instead of at the end of the path?

We could respond in terms of a sufficient material disposition: it is in the middle of the path because you are asking your question at the middle, instead of waiting until the end.

Suppose the questioner responds: Look, I asked my question at the middle of the path. But that was just chance. I could have asked at any moment, including at the end. So I want to know why it was in the middle without considering when I am asking the question.

If we look at the question in this way, it can be seen in one way that no cause or origin can be given. Asked in this way, being at the end cannot be excluded, since they could have asked their question at the end. But like the question about something rather than nothing, the question does not need an answer. In this case, this is not because the alternatives were merely apparent in the sense that one was possible and the other not. But they were merely apparent in the sense that they were not alternatives. The ball goes both goes through the middle, and reaches the end. With the stipulation that we not consider the time of the question, the two possibilities are not mutually exclusive.

Additional Considerations

The above considerations about the nature of “explanation” lead to various conclusions, but also to various new questions. For example, one commenter suggested that “explanation” is merely subjective. Now as I said there, all experience is subjective experience (what would “objective experience” even mean, except that someone truly had a subjective experience?), including the experience of having an explanation. Nonetheless, the thing experienced is not subjective: the origins that we call explanations objectively exclude the apparent possibilities, or objectively make them less intelligible. The explanation of explanation here, however, provides an answer to what was perhaps the implicit question. Namely, why are we so interested in explanations in the first place, so that the experience of understanding something becomes a particularly special type of experience? Why, as Aristotle puts it, do “all men desire to know,” and why is that desire particularly satisfied by explanations?

In one sense it is sufficient simply to say that understanding is good in itself. Nonetheless, there is something particular about the structure of a human being that makes knowledge good for us, and which makes explanation a particularly desirable form of knowledge. In my employer and employee model of human psychology, I said that “the whole company is functioning well overall when the CEO’s goal of accurate prediction is regularly being achieved.” This very obviously requires knowledge, and explanation is especially beneficial because it excludes alternatives, which reduces uncertainty and therefore tends to make prediction more accurate.

However, my account also raises new questions. If explanation eliminates alternatives, what would happen if everything was explained? We could respond that “explaining everything” is not possible in the first place, but this is probably an inadequate response, because (from the linked argument) we only know that we cannot explain everything all at once, the way the person in the room cannot draw everything at once; we do not know that there is any particular thing that cannot be explained, just as there is no particular aspect of the room that cannot be drawn. So there can still be a question about what would happen if every particular thing in fact has an explanation, even if we cannot know all the explanations at once. In particular, since explanation eliminates alternatives, does the existence of explanations imply that there are not really any alternatives? This would suggest something like Leibniz’s argument that the actual world is the best possible world. It is easy to see that such an idea implies that there was only one “possibility” in the first place: Leibniz’s “best possible world” would be rather “the only possible world,” since the apparent alternatives, given that they would have been worse, were not real alternatives in the first place.

On the other hand, if we suppose that this is not the case, and there are ultimately many possibilities, does this imply the existence of “brute facts,” things that could have been otherwise, but which simply have no explanation? Or at least things that have no complete explanation?

Let the reader understand. I have already implicitly answered these questions. However, I will not link here to the implicit answers because if one finds it unclear when and where this was done, one would probably also find those answers unclear and inconclusive. Of course it is also possible that the reader does see when this was done, but still believes those responses inadequate. In any case, it is possible to provide the answers in a form which is much clearer and more conclusive, but this will likely not be a short or simple project.

Words, Meaning, and Formal Copies

There is quick way to respond to the implicit questions at the end of the last post. I noted in an earlier discussion of form that form is not only copied into the mind; it is also copied into language itself. Any time you describe something in words, you are to some degree copying its form into your description.

This implies that Aristotle’s objection that a mind using an organ would not be able to know all things could equally be made against the possibility of describing all things in words. There simply are not enough combinations of words to relate them to all possible combinations of things; thus, just as a black and white image cannot imitate every aspect of a colored scene, so words cannot possibly describe every aspect of reality.

Two things are evident from this comparison:

First, the objection fails overall. There is nothing that cannot be described in words because words are flexible. If we don’t have a word for something, then we can make up a name. Similarly, the meaning of a single word depends on context.  The word “this” can refer to pretty much anything, depending on the context in which it is used. Likewise meaning can be affected by the particular situation of the person using the word, or by broader cultural contexts, and so on.

Second, there is some truth in the objection. It is indeed impossible to describe every aspect of reality at the same time and in complete detail, and the objection gives a very good reason for this: there are simply not enough linguistic combinations to represent all possible combinations of things. The fact that language is not prime matter does mean that language cannot express every detail of reality at once: the determination that is already there does exclude this possibility. But the flexibility of language prevents there from being any particular aspect of things that cannot be described.

My claim about the mind is the same. There is nothing that cannot be understood by the mind, despite the fact that the mind uses the brain, because the relationship between the brain, mind, and world is a flexible one. Just as the word “this” can refer to pretty much anything, so also the corresponding thought. But on the other hand, the limitations of the brain do mean that a perfectly detailed knowledge of everything is excluded.

Our Interlocutor Insists

In a sense, the above account is sufficient to respond to the objection. There does not seem to be a reason to hold Aristotle’s account of the immateriality of the mind, unless there is also a reason to hold that language cannot be used to describe some things, and this does not seem like a reasonable position. Nonetheless, this response will give rise to a new and more detailed objection.

A black and white scene, it will be said, really and truly copies some aspects of a colored scene, and fails to copy others. Thus right angles in the black and white scene may be identical to right angles in the colored scene. The angles are really copied, and the angles are not. But language seems different: since it is conventional, it does not really copy anything. We just pretend, as it were, that we are copying the thing. “Let the word ‘cat’ stand for a cat,” we say, but there is nothing catlike about the word in reality. The form of the cat is not really copied into the word, or so it will be argued. And since we are not really copying anything, this is why language has the flexibility to be able to describe all things. The meaning of thoughts, however, is presumably not conventional. So it seems that we need to copy things in a real way into the mind, the way we copy aspects of a colored scene into a black and white image. And thus, meaning in the mind should not be flexible in this way, and a particular material medium (such as the brain) would still impede knowing all things, the way the black and white image excludes color.

Formal Copies

The above objection is similar to Hilary Lawson’s argument that words cannot really refer to things. In the post linked above on form and reality, we quoted his argument that cause and effect do not have anything in common. I will reproduce that argument here; for the purpose of the following discussion it might be useful to the reader to refer to the remainder of that post.

For a system of closure to provide a means of intervention in openness and thus to function as a closure machine, it requires a means of converting the flux of openness into an array of particularities. This initial layer of closure will be identified as ‘preliminary closure’. As with closure generally, preliminary closure consists in the realisation of particularity as a consequence of holding that which is different as the same. This is achieved through the realisation of material in response to openness. The most minimal example of a system of closure consists of a single preliminary closure. Such a system requires two discrete states, or at least states that can be held as if they were discrete. It is not difficult to provide mechanical examples of such systems which allow for a single preliminary closure. A mousetrap for example, can be regarded as having two discrete states: it is either set, it is ready, or it has sprung, it has gone off. Many different causes may have led to it being in one state or another: it may have been sprung by a mouse, but it could also have been knocked by someone or something, or someone could have deliberately set it off. In the context of the mechanism all of these variations are of no consequence, it is either set or it has sprung. The diversity of the immediate environment is thereby reduced to single state and its absence: it is either set or it is not set. Any mechanical arrangement that enables a system to alternate between two or more discrete states is thereby capable of providing the basis for preliminary closure. For example, a bell or a gate could function as the basis for preliminary closure. The bell can either ring or not ring, the gate can be closed or not closed. The bell may ring as the result of the wind, or a person or animal shaking it, but the cause of the response is in the context of system of no consequence. The bell either rings or it doesn’t. Similarly, the gate may be in one state or another because it has been deliberately moved, or because something or someone has dislodged it accidentally, but these variations are not relevant in the context of the state of system, which in this case is the position of the gate. In either case the cause of the bell ringing or the gate closing is infinitely varied, but in the context of the system the variety of inputs is not accessible to the system and thus of no consequence.

Lawson’s basic argument is that any particular effect could result from any of an infinite number of different causes, and the cause and effect might be entirely different: the effect might be ringing of a bell, but the cause was not bell-like at all, and did not have a ringing sound. So the effect, he says, tells you nothing at all about the cause. In a similar way, he claims, our thoughts cause our words, but our words and our thoughts have nothing in common, and thus our words tell us nothing about our thoughts; and in that sense they do not refer to anything, not even to our thoughts. Likewise, he says, the world causes our thoughts, but since the cause and effect have nothing in common, our thoughts tell us nothing about the world, and do not even refer to it.

As I responded at the time, this account is mistaken from the very first step. Cause and effect always have something in common, namely the cause-effect relationship, although they each have different ends of that relationship. They will also have other things in common depending on the particular nature of the cause and effect in question. Similarly, the causes that are supposedly utterly diverse, in Lawson’s account, have something in common themselves: every situation that rings the bell has “aptness to ring the bell” in common. And when the bell is rung, it “refers” to these situations by the implication that we are in a situation that has aptness to ring the bell, rather than in one of the other situations.

It is not accidental here that “refer” and “relate” are taken from forms of the same verb. Lawson’s claim that words do not “refer” to things is basically the same as the claim that they are not really related to things. And the real problem is that he is looking at matter (in this case the bell) without considering form (in this case the bell’s relationship with the world.)

In a similar way, to say that the word “cat” is not catlike is to look at the sound or at the text as matter, without considering its form, namely the relationship it has with the surrounding context which causes that word to be used. But that relationship is real; the fact that the word is conventional does not prevent it from being true that human experience of cats is the cause of thoughts of cats, and that thoughts of cats are concretely the cause of the usage of the word “cat,” even if they could in some other situation have caused some other word to be used.

I argued in the post on the nature of form (following the one with the discussion of Lawson) that form is a network of relationships apt to make something one. Insofar as an effect really receives form from a cause in the above way, words really receive meaning from the context that gives rise to their use. And in this way, it is not true that form in language is unlike form in a black and white scene, such that one could say that form in the scene is “real” and form in language is not. Both are real.

Thus the objection fails. Nonetheless, it is true that it is easier to see why it is possible to describe anything in words, than it is to see why anything can be known. And this happens simply because “anything is describable in words” precisely because “anything can be known.” So the fact that anything can be known is the more remote cause, and thus harder to know.

 

Tautologies Not Trivial

In mathematics and logic, one sometimes speaks of a “trivial truth” or “trivial theorem”, referring to a tautology. Thus for example in this Quora question, Daniil Kozhemiachenko gives this example:

The fact that all groups of order 2 are isomorphic to one another and commutative entails that there are no non-Abelian groups of order 2.

This statement is a tautology because “Abelian group” here just means one that is commutative: the statement is like the customary example of asserting that “all bachelors are unmarried.”

Some extend this usage of “trivial” to refer to all statements that are true in virtue of the meaning of the terms, sometimes called “analytic.” The effect of this is to say that all statements that are logically necessary are trivial truths. An example of this usage can be seen in this paper by Carin Robinson. Robinson says at the end of the summary:

Firstly, I do not ask us to abandon any of the linguistic practises discussed; merely to adopt the correct attitude towards them. For instance, where we use the laws of logic, let us remember that there are no known/knowable facts about logic. These laws are therefore, to the best of our knowledge, conventions not dissimilar to the rules of a game. And, secondly, once we pass sentence on knowing, a priori, anything but trivial truths we shall have at our disposal the sharpest of philosophical tools. A tool which can only proffer a better brand of empiricism.

While the word “trivial” does have a corresponding Latin form that means ordinary or commonplace, the English word seems to be taken mainly from the “trivium” of grammar, rhetoric, and logic. This would seem to make some sense of calling logical necessities “trivial,” in the sense that they pertain to logic. Still, even here something is missing, since Robinson wants to include the truths of mathematics as trivial, and classically these did not pertain to the aforesaid trivium.

Nonetheless, overall Robinson’s intention, and presumably that of others who speak this way, is to suggest that such things are trivial in the English sense of “unimportant.” That is, they may be important tools, but they are not important for understanding. This is clear at least in our example: Robinson calls them trivial because “there are no known/knowable facts about logic.” Logical necessities tell us nothing about reality, and therefore they provide us with no knowledge. They are true by the meaning of the words, and therefore they cannot be true by reason of facts about reality.

Things that are logically necessary are not trivial in this sense. They are important, both in a practical way and directly for understanding the world.

Consider the failure of the Mars Climate Orbiter:

On November 10, 1999, the Mars Climate Orbiter Mishap Investigation Board released a Phase I report, detailing the suspected issues encountered with the loss of the spacecraft. Previously, on September 8, 1999, Trajectory Correction Maneuver-4 was computed and then executed on September 15, 1999. It was intended to place the spacecraft at an optimal position for an orbital insertion maneuver that would bring the spacecraft around Mars at an altitude of 226 km (140 mi) on September 23, 1999. However, during the week between TCM-4 and the orbital insertion maneuver, the navigation team indicated the altitude may be much lower than intended at 150 to 170 km (93 to 106 mi). Twenty-four hours prior to orbital insertion, calculations placed the orbiter at an altitude of 110 kilometers; 80 kilometers is the minimum altitude that Mars Climate Orbiter was thought to be capable of surviving during this maneuver. Post-failure calculations showed that the spacecraft was on a trajectory that would have taken the orbiter within 57 kilometers of the surface, where the spacecraft likely skipped violently on the uppermost atmosphere and was either destroyed in the atmosphere or re-entered heliocentric space.[1]

The primary cause of this discrepancy was that one piece of ground software supplied by Lockheed Martin produced results in a United States customary unit, contrary to its Software Interface Specification (SIS), while a second system, supplied by NASA, expected those results to be in SI units, in accordance with the SIS. Specifically, software that calculated the total impulse produced by thruster firings produced results in pound-force seconds. The trajectory calculation software then used these results – expected to be in newton seconds – to update the predicted position of the spacecraft.

It is presumably an analytic truth that the units defined in one way are unequal to the units defined in the other. But it was ignoring this analytic truth that was the primary cause of the space probe’s failure. So it is evident that analytic truths can be extremely important for practical purposes.

Such truths can also be important for understanding reality. In fact, they are typically more important for understanding than other truths. The argument against this is that if something is necessary in virtue of the meaning of the words, it cannot be telling us something about reality. But this argument is wrong for one simple reason: words and meaning themselves are both elements of reality, and so they do tell us something about reality, even when the truth is fully determinate given the meaning.

If one accepts the mistaken argument, in fact, sometimes one is led even further. Logically necessary truths cannot tell us anything important for understanding reality, since they are simply facts about the meaning of words. On the other hand, anything which is not logically necessary is in some sense accidental: it might have been otherwise. But accidental things that might have been otherwise cannot help us to understand reality in any deep way: it tells us nothing deep about reality to note that there is a tree outside my window at this moment, when this merely happens to be the case, and could easily have been otherwise. Therefore, since neither logically necessary things, nor logically contingent things, can help us to understand reality in any deep or important way, such understanding must be impossible.

It is fairly rare to make such an argument explicitly, but it is a common implication of many arguments that are actually made or suggested, or it at least influences the way people feel about arguments and understanding.  For example, consider this comment on an earlier post. Timocrates suggests that (1) if you have a first cause, it would have to be a brute fact, since it doesn’t have any other cause, and (2) describing reality can’t tell us any reasons but is “simply another description of how things are.” The suggestion behind these objections is that the very idea of understanding is incoherent. As I said there in response, it is true that every true statement is in some sense “just a description of how things are,” but that was what a true statement was meant to be in any case. It surely was not meant to be a description of how things are not.

That “analytic” or “tautologous” statements can indeed provide a non-trivial understanding of reality can also easily be seen by example. Some examples from this blog:

Good and being. The convertibility of being and goodness is “analytic,” in the sense that carefully thinking about the meaning of desire and the good reveals that a universe where existence as such was bad, or even failed to be good, is logically impossible. In particular, it would require a universe where there is no tendency to exist, and this is impossible given that it is posited that something exists.

Natural selection. One of the most important elements of Darwin’s theory of evolution is the following logically necessary statement: the things that have survived are more likely to be the things that were more likely to survive, and less likely to be the things that were less likely to survive.

Limits of discursive knowledge. Knowledge that uses distinct thoughts and concepts is necessarily limited by issues relating to self-reference. It is clear that this is both logically necessary, and tells us important things about our understanding and its limits.

Knowledge and being. Kant rightly recognized a sense in which it is logically impossible to “know things as they are in themselves,” as explained in this post. But as I said elsewhere, the logically impossible assertion that knowledge demands an identity between the mode of knowing and the mode of being is the basis for virtually every sort of philosophical error. So a grasp on the opposite “tautology” is extremely useful for understanding.

 

Quantum Mechanics and Libertarian Free Will

In a passage quoted in the last post, Jerry Coyne claims that quantum indeterminacy is irrelevant to free will: “Even the pure indeterminism of quantum mechanics can’t give us free will, because that’s simple randomness, and not a result of our own ‘will.'”

Coyne seems to be thinking that since quantum indeterminism has fixed probabilities in any specific situation, the result for human behavior would necessarily be like our second imaginary situation in the last post. There might be a 20% chance that you would randomly do X, and an 80% chance that you would randomly do Y, and nothing can affect these probabilities. Consequently you cannot be morally responsible for doing X or for doing Y, nor should you be praised or blamed for them.

Wait, you might say. Coyne explicitly favors praise and blame in general. But why? If you would not praise or blame someone doing something randomly, why should you praise or blame someone doing something in a deterministic manner? As explained in the last post, the question is whether reasons have any influence on your behavior. Coyne is assuming that if your behavior is deterministic, it can still be influenced by reasons, but if it is indeterministic, it cannot be. But there is no reason for this to be case. Your behavior can be influenced by reasons whether it is deterministic or not.

St. Thomas argues for libertarian free will on the grounds that there can be reasons for opposite actions:

Man does not choose of necessity. And this is because that which is possible not to be, is not of necessity. Now the reason why it is possible not to choose, or to choose, may be gathered from a twofold power in man. For man can will and not will, act and not act; again, he can will this or that, and do this or that. The reason of this is seated in the very power of the reason. For the will can tend to whatever the reason can apprehend as good. Now the reason can apprehend as good, not only this, viz. “to will” or “to act,” but also this, viz. “not to will” or “not to act.” Again, in all particular goods, the reason can consider an aspect of some good, and the lack of some good, which has the aspect of evil: and in this respect, it can apprehend any single one of such goods as to be chosen or to be avoided. The perfect good alone, which is Happiness, cannot be apprehended by the reason as an evil, or as lacking in any way. Consequently man wills Happiness of necessity, nor can he will not to be happy, or to be unhappy. Now since choice is not of the end, but of the means, as stated above (Article 3); it is not of the perfect good, which is Happiness, but of other particular goods. Therefore man chooses not of necessity, but freely.

Someone might object that if both are possible, there cannot be a reason why someone chooses one rather than the other. This is basically the claim in the third objection:

Further, if two things are absolutely equal, man is not moved to one more than to the other; thus if a hungry man, as Plato says (Cf. De Coelo ii, 13), be confronted on either side with two portions of food equally appetizing and at an equal distance, he is not moved towards one more than to the other; and he finds the reason of this in the immobility of the earth in the middle of the world. Now, if that which is equally (eligible) with something else cannot be chosen, much less can that be chosen which appears as less (eligible). Therefore if two or more things are available, of which one appears to be more (eligible), it is impossible to choose any of the others. Therefore that which appears to hold the first place is chosen of necessity. But every act of choosing is in regard to something that seems in some way better. Therefore every choice is made necessarily.

St. Thomas responds to this that it is a question of what the person considers:

If two things be proposed as equal under one aspect, nothing hinders us from considering in one of them some particular point of superiority, so that the will has a bent towards that one rather than towards the other.

Thus for example, someone might decide to become a doctor because it pays well, or they might decide to become a truck driver because they enjoy driving. Whether they consider “what would I enjoy?” or “what would pay well?” will determine which choice they make.

The reader might notice a flaw, or at least a loose thread, in St. Thomas’s argument. In our example, what determines whether you think about what pays well or what you would enjoy? This could be yet another choice. I could create a spreadsheet of possible jobs and think, “What should I put on it? Should I put the pay? or should I put what I enjoy?” But obviously the question about necessity will simply be pushed back, in this case. Is this choice itself determinate or indeterminate? And what determines what choice I make in this case? Here we are discussing an actual temporal series of thoughts, and it absolutely must have a first, since human life has a beginning in time. Consequently there will have to be a point where, if there is the possibility of “doing A for reason B” and “doing C for reason D”, it cannot be any additional consideration which determines which one is done.

Now it is possible at this point that St. Thomas is mistaken. It might be that the hypothesis that both were “really” possible is mistaken, and something does determine one rather than the other with “necessity.” It is also possible that he is not mistaken. Either way, human reasons do not influence the determination, because reason B and/or reason D are the first reasons considered, by hypothesis (if they were not, we would simply push back the question.)

At this point someone might consider this lack of the influence of reasons to imply that people are not morally responsible for doing A or for doing C. The problem with this is that if you do something without a reason (and without potentially being influenced by a reason), then indeed you would not be morally responsible. But the person doing A or C is not uninfluenced by reasons. They are influenced by reason B, or by reason D. Consequently, they are responsible for their specific action, because they do it for a reason, despite the fact that there is some other general issue that they are not responsible for.

What influence could quantum indeterminacy have here? It might be responsible for deciding between “doing A for reason B” and “doing C for reason D.” And as Coyne says, this would be “simple randomness,” with fixed probabilities in any particular situation. But none of this would prevent this from being a situation that would include libertarian free will, since libertarian free will is precisely nothing but the situation where there are two real possibilities: you might do one thing for one reason, or another thing for another reason. And that is what we would have here.

Does quantum mechanics have this influence in fact, or is this just a theoretical possibility? It very likely does. Some argue that it probably doesn’t, on the grounds that quantum mechanics does not typically seem to imply much indeterminacy for macroscopic objects. The problem with this argument is that the only way of knowing that quantum indeterminacy rarely leads to large scale differences is by using humanly designed items like clocks or computers. And these are specifically designed to be determinate: whenever our artifact is not sufficiently determinate and predictable, we change the design until we get something predictable. If we look at something in nature uninfluenced by human design, like a waterfall, is details are highly unpredictable to us. Which drop of water will be the most distant from this particular point one hour from now? There is no way to know.

But how much real indeterminacy is in the waterfall, or in the human brain, due to quantum indeterminacy? Most likely nobody knows, but it is basically a question of timescales. Do you get a great deal of indeterminacy after one hour, or after several days? One way or another, with the passage of enough time, you will get a degree of real indeterminacy as high as you like. The same thing will be equally true of human behavior. We often notice, in fact, that at short timescales there is less indeterminacy than we subjectively feel. For example, if someone hesitates to accept an invitation, in many situations, others will know that the person is very likely to decline. But the person feels very uncertain, as though there were a 50/50 chance of accepting or declining. The real probabilities might be 90/10 or even more slanted. Nonetheless, the question is one of timescales and not of whether or not there is any indeterminacy. There is, this is basically settled, it will apply to human behavior, and there is little reason to doubt that it applies at relatively short timescales compared to the timescales at which it applies to clocks and computers or other things designed with predictability in mind.

In this sense, quantum indeterminacy strongly suggests that St. Thomas is basically correct about libertarian free will.

On the other hand, Coyne is also right about something here. While it is not true that such “randomness” removes moral responsibility, the fact that people do things for reasons, or that praise and blame is a fitting response to actions done for reasons, Coyne correctly notices that it does not add to the fact that someone is responsible. If there is no human reason for the fact that a person did A for reason B rather than C for reason D, this makes their actions less intelligible, and thus less subject to responsibility. In other words, the “libertarian” part of libertarian free will does not make the will more truly a will, but less truly. In this respect, Coyne is right. This however is unrelated to quantum mechanics or to any particular scientific account. The thoughtful person can understand this simply from general considerations about what it means to act for a reason.

Causality and Moral Responsibility

Consider two imaginary situations:

(1) In the first situation, people are such that when someone sees a red light, they immediately go off and kill someone. Nothing can be done to prevent this, and no intention or desire to do otherwise makes any difference.

In this situation, killing someone after you have seen a red light is not blamed, since it cannot be avoided, but we blame people who show red lights to others. Such people are arrested and convicted as murderers.

(2) In the second situation, people are such that when someone sees a red light, there is a 5% chance they will go off and immediately kill someone, and a 95% chance they will behave normally. Nothing can change this probability: it does not matter whether the person is wicked or virtuous or what their previous attitude to killing was.

In this situation, again, we do not blame people who end up killing someone, but we call them unlucky. We do however blame people who show others red lights, and they are arrested and convicted of second degree murder, or in some cases manslaughter.

Some people would conclude from this that moral responsibility is incoherent: whether the world is deterministic or not, moral responsibility is impossible. Jerry Coyne defends this position in numerous places, as for example here:

We’ve taken a break from the many discussions on this site about free will, but, cognizant of the risks, I want to bring it up again. I think nearly all of us agree that there’s no dualism involved in our decisions: they’re determined completely by the laws of physics. Even the pure indeterminism of quantum mechanics can’t give us free will, because that’s simple randomness, and not a result of our own “will.”

Coyne would perhaps say that “free will” embodies a contradiction much in the way that “square circle” does. “Will” implies a cause, and thus something deterministic. “Free” implies indeterminism, and thus no cause.

In many places Coyne asserts that this implies that moral responsibility does not exist, as for example here:

This four-minute video on free will and responsibility, narrated by polymath Raoul Martinez, was posted by the Royal Society for the Encouragement of the Arts, Manufactures, and Commerce (RSA). Martinez’s point is one I’ve made here many times, and will surely get pushback from: determinism rules human behavior, and our “choices” are all predetermined by our genes and environment. To me, that means that the concept of “moral responsibility” is meaningless, for that implies an ability to choose freely. Nevertheless, we should still retain the concept of responsibility, meaning “an identifiable person did this or that good or bad action”. And, of course, we can sanction or praise people who were responsible in this sense, for such blame and praise can not only reinforce good behavior but is salubrious for society.

I think that Coyne is very wrong about the meaning of free will, somewhat wrong about responsibility, and likely wrong about the consequences of his views for society (e.g. he believes that his view will lead to more humane treatment of prisoners. There is no particular reason to expect this.)

The imaginary situations described in the initial paragraphs of this post do not imply that moral responsibility is impossible, but they do tell us something. In particular, they tell us that responsibility is not directly determined by determinism or its lack. And although Coyne says that “moral responsibility” implies indeterminism, surely even Coyne would not advocate blaming or punishing the person who had the 5% chance of going and killing someone. And the reason is clear: it would not “reinforce good behavior” or be “salubrious for society.” By the terms set out, it would make no difference, so blaming or punishing would be pointless.

Coyne is right that determinism does not imply that punishment is pointless. And he also recognizes that indeterminism does not of itself imply that anyone is responsible for anything. But he fails here to put two and two together: just as determinism does not imply punishment is pointless, nor that it is not, indeterminism likewise implies neither of the two. The conclusion he should draw is not that moral responsibility is meaningless, but that it is independent of both determinism and indeterminism; that is, that both deterministic compatibilism and libertarian free will allow for moral responsibility.

So what is required for praise and blame to have a point? Elsewhere we discussed C.S. Lewis’s claim that something can have a reason or a cause, but not both. In a sense, the initial dilemma in this post can be understood as a similar argument. Either our behavior has deterministic causes, or it has indeterministic causes; therefore it does not have reasons; therefore moral responsibility does not exist.

On the other hand, if people do have reasons for their behavior, there can be good reasons for blaming people who do bad things, and for punishing them. Namely, since those people are themselves acting for reasons, they will be less likely in the future to do those things, and likewise other people, fearing punishment and blame, will be less likely to do them.

As I said against Lewis, reasons do not exclude causes, but require them. Consequently what is necessary for moral responsibility are causes that are consistent with having reasons; one can easily imagine causes that are not consistent with having reasons, as in the imaginary situations described, and such causes would indeed exclude responsibility.

Spooky Action at a Distance

Albert Einstein objected to the usual interpretations of quantum mechanics because they seemed to him to imply “spooky action at a distance,” a phrase taken from a letter from Einstein to Max Born in 1947 (page 155 in this book):

I cannot make a case for my attitude in physics which you would consider at all reasonable. I admit, of course, that there is a considerable amount of validity in the statistical approach which you were the first to recognize clearly as necessary given the framework of the existing formalism. I cannot seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality in time and space, free from spooky actions at a distance. I am, however, not yet firmly convinced that it can really be achieved with a continuous field theory, although I have discovered a possible way of doing this which so far seems quite reasonable. The calculation difficulties are so great that I will be biting the dust long before I myself can be fully convinced of it. But I am quite convinced that someone will eventually come up with a theory whose objects, connected by laws, are not probabilities but considered facts, as used to be taken for granted until quite recently. I cannot, however, base this conviction on logical reasons, but can only produce my little finger as witness, that is, I offer no authority which would be able to command any kind of respect outside of my own hand.

Einstein has two objections: the theory seems to be indeterministic, and it also seems to imply action at a distance. He finds both of these implausible. He thinks physics should be deterministic, “as used to be taken for granted until quite recently,” and that all interactions should be local: things directly affect only things which are close by, and affect distant things only indirectly.

In many ways, things do not appear to have gone well for Einstein’s intuitions. John Bell constructed a mathematical argument, now known as Bell’s Theorem, that the predictions of quantum mechanics cannot be reproduced by the kind of theory desired by Einstein. Bell summarizes his point:

The paradox of Einstein, Podolsky and Rosen was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality. In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty. There have been attempts to show that even without such a separability or locality requirement no “hidden variable” interpretation of quantum mechanics is possible. These attempts have been examined elsewhere and found wanting. Moreover, a hidden variable interpretation of elementary quantum theory has been explicitly constructed. That particular interpretation has indeed a grossly non-local structure. This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions.

“Causality and locality” in this description are exactly the two points where Einstein objected in the quoted letter: causality, as understood here, implies determinism, and locality implies no spooky action at a distance. Given this result, Einstein might have hoped that the predictions of quantum mechanics would turn out to fail, so that he could still have his desired physics. This did not happen. On the contrary, these predictions (precisely those inconsistent with such theories) have been verified time and time again.

Rather than putting the reader through Bell’s math and physics, we will explain his result with an analogy by Mark Alford. Alford makes this comparison:

Imagine that someone has told us that twins have special powers, including the ability to communicate with each other using telepathic influences that are “superluminal” (faster than light). We decide to test this by collecting many pairs of twins, separating each pair, and asking each twin one question to see if their answers agree.

To make things simple we will only have three possible questions, and they will be Yes/No questions. We will tell the twins in advance what the questions are.

The procedure is as follows.

  1. A new pair of twins is brought in and told what the three possible questions are.
  2. The twins travel far apart in space to separate questioning locations.
  3. At each location there is a questioner who selects one of the three questions at random, and poses that question to the twin in front of her.
  4. Spacelike separation. When the question is chosen and asked at one location, there is not enough time for any influence traveling at the speed of light to get from there to the other location in time to affect either what question is chosen there, or the answer given.

He now supposes the twins give the same responses when they are asked the same question, and discusses this situation:

Now, suppose we perform this experiment and we find same-question agreement: whenever a pair of spacelike-separated twins both happen to get asked the same question, their answers always agree. How could they do this? There are two possible explanations,

1. Each pair of twins uses superluminal telepathic communication to make sure both twins give the same answer.

2. Each pair of twins follows a plan. Before they were separated they agreed in advance what their answers to the three questions would be.

The same-question agreement that we observe does not prove that twins can communicate telepathically faster than light. If we believe that strong locality is a valid principle, then we can resort to the other explanation, that each pair of twins is following a plan. The crucial point is that this requires determinism. If there were any indeterministic evolution while the twins were spacelike separated, strong locality requires that the random component of one twin’s evolution would have to be uncorrelated with the other twin’s evolution. Such uncorrelated indeterminism would cause their recollections of the plan to diverge, and they would not always show same-question agreement.

The results are understandable if the twins agree on the answers Yes-Yes-Yes, or Yes-No-Yes, or any other determinate combination. But they are not understandable if they decide to flip coins if they are asked the second question, for example. If they did this, they would have to disagree 50% of the time on that question, unless one of the coin flips affected the other.

Alford goes on to discuss what happens when the twins are asked different questions:

In the thought experiment as described up to this point we only looked at the recorded answers in cases where each twin in a given pair was asked the same question. There are also recorded data on what happens when the two questioners happen to choose different questions. Bell noticed that this data can be used as a cross-check on our strong-locality-saving idea that the twins are following a pre-agreed plan that determines that their answers will always agree. The cross-check takes the form of an inequality:

Bell inequality for twins:

If a pair of twins is following a plan then, when each twin is asked a different randomly chosen question, their answers will be the same, on average, at least 1/3 of the time.

He derives this value:

For each pair of twins, there are four general types of pre-agreed plan they could adopt when they are arranging how they will both give the same answer to each of the three possible questions.

(a) a plan in which all three answers are Yes;

(b) a plan in which there are two Yes and one No;

(c) a plan in which there are two No and one Yes;

(d) a plan in which all three answers are No.

If, as strong locality and same-question agreement imply, both twins in a given pair follow a shared predefined plan, then when the random questioning leads to each of them being asked a different question from the set of three possible questions, how often will their answers happen to be the same (both Yes or both No)? If the plan is of type (a) or (d), both answers will always be the same. If the plan is of type (b) or (c), both answers will be the same 1/3 of the time. We conclude that no matter what type of plan each pair of twins may follow, the mere fact that they are following a plan implies that, when each of them is asked a different randomly chosen question, they will both give the same answer (which might be Yes or No) at least 1/3 of the time. It is important to appreciate that one needs data from many pairs of twins to see this effect, and that the inequality holds even if each pair of twins freely chooses any plan they like.

The “Bell inequality” is violated if we do the experimental test and the twins end up agreeing, when they are asked different questions, less than 1/3 of the time, despite consistently agreeing when they are asked the same question. If one saw such results in reality, one might be forgiven for concluding that the twins do have superluminal telepathic abilities. Unfortunately for Einstein, this is what we do get, consistently, when we test the analogous quantum mechanical version of the experiment.